Babaei M, et al. (2024) Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets. ACS Synth Biol 13(1):168-182 PMID:38141039
Dong F, et al. (2024) Transporter function characterization via continuous-exchange cell-free synthesis and solid supported membrane-based electrophysiology. Bioelectrochemistry 159:108732 PMID:38810322
Møller-Hansen I, et al. (2024) Deorphanizing solute carriers in Saccharomyces cerevisiae for secondary uptake of xenobiotic compounds. Front Microbiol 15:1376653 PMID:38680917
Sáez-Sáez J, et al. (2024) Identification of transporters involved in aromatic compounds tolerance through screening of transporter deletion libraries. Microb Biotechnol 17(4):e14460 PMID:38635191
Theron CW, et al. (2024) Evidence for the Role of the Mitochondrial ABC Transporter MDL1 in the Uptake of Clozapine and Related Molecules into the Yeast Saccharomyces cerevisiae. Pharmaceuticals (Basel) 17(7) PMID:39065789
Babaei M, et al. (2023) Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod 16(1):128 PMID:37592353
Stanchev LD, et al. (2023) Screening of Saccharomyces cerevisiae metabolite transporters by 13C isotope substrate labeling. Front Microbiol 14:1286597 PMID:38116525
Ramos-Viana V, et al. (2022) Modulation of the cell wall protein Ecm33p in yeast Saccharomyces cerevisiae improves the production of small metabolites. FEMS Yeast Res 22(1) PMID:35922083
Stovicek V, et al. (2022) Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. Biotechnol Biofuels Bioprod 15(1):22 PMID:35219341
van der Hoek SA, et al. (2022) Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. Metab Eng 70:129-142 PMID:35085780
Babaei M, et al. (2021) Expansion of EasyClone-MarkerFree toolkit for Saccharomyces cerevisiae genome with new integration sites. FEMS Yeast Res 21(4) PMID:33893795
Costa CE, et al. (2021) Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial Saccharomyces cerevisiae Strains. ACS Synth Biol 10(8):1895-1903 PMID:34304554
Fathi Z, et al. (2021) Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. FEMS Yeast Res 21(1) PMID:33332529
Wang G, et al. (2021) Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites. Essays Biochem 65(2):277-291 PMID:34061167
Dahlin J, et al. (2020) Corrigendum: Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 11:637738 PMID:33505441
Milne N, et al. (2020) A teaching protocol demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica. FEMS Yeast Res 20(2) PMID:31556952
Milne N, et al. (2020) Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives. Metab Eng 60:25-36 PMID:32224264
Wang G, et al. (2020) Improvement of cis,cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering. ACS Synth Biol 9(3):634-646 PMID:32058699
Babaei M, et al. (2019) Engineering Oleaginous Yeast as the Host for Fermentative Succinic Acid Production From Glucose. Front Bioeng Biotechnol 7:361 PMID:31828067
Dahlin J, et al. (2019) Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 10:747 PMID:31543895
Darbani B, et al. (2019) Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 116(39):19415-19420 PMID:31467169
Jessop-Fabre MM, et al. (2019) The Transcriptome and Flux Profiling of Crabtree-Negative Hydroxy Acid-Producing Strains of Saccharomyces cerevisiae Reveals Changes in the Central Carbon Metabolism. Biotechnol J 14(9):e1900013 PMID:30969019
Kildegaard KR, et al. (2019) CRISPR/Cas9-RNA interference system for combinatorial metabolic engineering of Saccharomyces cerevisiae. Yeast 36(5):237-247 PMID:30953378
Tiukova IA, et al. (2019) Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 366(17) PMID:31665273
van der Hoek SA, et al. (2019) Engineering the Yeast Saccharomyces cerevisiae for the Production of L-(+)-Ergothioneine. Front Bioeng Biotechnol 7:262 PMID:31681742
Rodriguez A, et al. (2017) Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metab Eng 44:265-272 PMID:29101089
Rodriguez A, et al. (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245(Pt B):1645-1654 PMID:28634125
Jessop-Fabre MM, et al. (2016) EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11(8):1110-7 PMID:27166612
Kildegaard KR, et al. (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 15:53 PMID:26980206
Maury J, et al. (2016) EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 11(3):e0150394 PMID:26934490
Borodina I, et al. (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57-64 PMID:25447643
Jakočiūnas T, et al. (2015) CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. ACS Synth Biol 4(11):1226-34 PMID:25781611
Kildegaard KR, et al. (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132-136 PMID:34150516
Li M and Borodina I (2015) Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res 15(1):1-12 PMID:25238571
Rodriguez A, et al. (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181-8 PMID:26292030
Stovicek V, et al. (2015) CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13-22 PMID:34150504
Borodina I and Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609-20 PMID:24677744
Jensen NB, et al. (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238-48 PMID:24151867
Kildegaard KR, et al. (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57-66 PMID:25263954
Chen X, et al. (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21 PMID:21798060