Chadwick SR, et al. (2025) TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae. Mol Biol Cell 36(2):ar13 PMID:39661468
Berg MD, et al. (2022) Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG. G3 (Bethesda) 12(7) PMID:35587152
Berg MD, et al. (2020) Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3 (Bethesda) 10(12):4335-4345 PMID:33082270
Zhu Y, et al. (2020) Mistranslating tRNA identifies a deleterious S213P mutation in the Saccharomyces cerevisiaeeco1-1 allele. Biochem Cell Biol 98(5):624-630 PMID:32476470
Jiang Y, et al. (2019) Sfp1 links TORC1 and cell growth regulation to the yeast SAGA-complex component Tra1 in response to polyQ proteotoxicity. Traffic 20(4):267-283 PMID:30740854
Berg MD, et al. (2018) The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (Bethesda) 8(6):1943-1957 PMID:29626083
Cheng X, et al. (2018) Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A 115(40):10028-10033 PMID:30224481
Berg MD, et al. (2017) Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae. Genetics 206(4):1865-1879 PMID:28576863
Hoffman KS, et al. (2017) Genetic selection for mistranslation rescues a defective co-chaperone in yeast. Nucleic Acids Res 45(6):3407-3421 PMID:27899648
DaSilva LF, et al. (2013) The C-terminal residues of Saccharomyces cerevisiae Mec1 are required for its localization, stability, and function. G3 (Bethesda) 3(10):1661-74 PMID:23934994
Genereaux J, et al. (2012) Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1. Genetics 191(3):765-80 PMID:22505622
Stead BE, et al. (2011) Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 39(16):6998-7008 PMID:21596784
Bailey ML, et al. (2008) The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role. Biochemistry 47(44):11481-9 PMID:18844375
Hoke SM, et al. (2008) A conserved central region of yeast Ada2 regulates the histone acetyltransferase activity of Gcn5 and interacts with phospholipids. J Mol Biol 384(4):743-55 PMID:18950642
Yousef AF, et al. (2008) Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae. Int J Cancer 122(4):942-6 PMID:17957787
Behrsin CD, et al. (2007) Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution. J Mol Biol 365(4):1143-62 PMID:17113106
Mutiu AI, et al. (2007) The role of histone ubiquitylation and deubiquitylation in gene expression as determined by the analysis of an HTB1(K123R) Saccharomyces cerevisiae strain. Mol Genet Genomics 277(5):491-506 PMID:17447102
Ricci AR, et al. (2002) Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. Mol Cell Biol 22(12):4033-42 PMID:12024017
Shuen M, et al. (2002) The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains. J Biol Chem 277(34):30844-51 PMID:12070146
Turner SD, et al. (2002) The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription. Mol Cell Biol 22(12):4011-9 PMID:12024015
Davey M, et al. (2000) The yeast peptidyl proline isomerases FPR3 and FPR4, in high copy numbers, suppress defects resulting from the absence of the E3 ubiquitin ligase TOM1. Mol Gen Genet 263(3):520-6 PMID:10821187
Saleh A, et al. (1998) TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J Mol Biol 282(5):933-46 PMID:9753545
Saleh A, et al. (1997) Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J Biol Chem 272(9):5571-8 PMID:9038164
Brandl CJ, et al. (1996) Structure/functional properties of the yeast dual regulator protein NGG1 that are required for glucose repression. J Biol Chem 271(16):9298-306 PMID:8621592
Martens JA, et al. (1996) Transcriptional activation by yeast PDR1p is inhibited by its association with NGG1p/ADA3p. J Biol Chem 271(27):15884-90 PMID:8663102
Liaw PC and Brandl CJ (1994) Defining the sequence specificity of the Saccharomyces cerevisiae DNA binding protein REB1p by selecting binding sites from random-sequence oligonucleotides. Yeast 10(6):771-87 PMID:7975895
Martens JA and Brandl CJ (1994) GCN4p activation of the yeast TRP3 gene is enhanced by ABF1p and uses a suboptimal TATA element. J Biol Chem 269(22):15661-7 PMID:8195216
Brandl CJ, et al. (1993) Characterization of NGG1, a novel yeast gene required for glucose repression of GAL4p-regulated transcription. EMBO J 12(13):5255-65 PMID:8262068
Brandl CJ, et al. (1992) TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter. J Biol Chem 267(29):20943-52 PMID:1400410
Ellenberger TE, et al. (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71(7):1223-37 PMID:1473154
Brandl CJ and Struhl K (1990) A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol Cell Biol 10(8):4256-65 PMID:2196450
Brandl CJ and Struhl K (1989) Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro. Proc Natl Acad Sci U S A 86(8):2652-6 PMID:2649888
Oliphant AR, et al. (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9(7):2944-9 PMID:2674675
Struhl K, et al. (1988) Transcriptional activation by yeast GCN4, a functional homolog to the jun oncoprotein. Cold Spring Harb Symp Quant Biol 53 Pt 2:701-9 PMID:3151184
Brandl CJ, et al. (1987) Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262(8):3768-74 PMID:3029125
MacLennan DH, et al. (1985) Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316(6030):696-700 PMID:2993904