Wang J, et al. (2022) Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185(24):4474-4487.e17 PMID:36334590
Vindu A, et al. (2021) Translational autoregulation of the S. cerevisiae high-affinity polyamine transporter Hol1. Mol Cell 81(19):3904-3918.e6 PMID:34375581
Wang J, et al. (2020) Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex. Nat Commun 11(1):5003 PMID:33024099
Gregory LC, et al. (2019) Impaired EIF2S3 function associated with a novel phenotype of X-linked hypopituitarism with glucose dysregulation. EBioMedicine 42:470-480 PMID:30878599
Skopkova M, et al. (2017) EIF2S3 Mutations Associated with Severe X-Linked Intellectual Disability Syndrome MEHMO. Hum Mutat 38(4):409-425 PMID:28055140
Li JJ, et al. (2015) Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc Natl Acad Sci U S A 112(32):E4364-73 PMID:26216977
Rojas M, et al. (2015) An eIF2α-binding motif in protein phosphatase 1 subunit GADD34 and its viral orthologs is required to promote dephosphorylation of eIF2α. Proc Natl Acad Sci U S A 112(27):E3466-75 PMID:26100893
Sathe L, et al. (2015) Evidence That Base-pairing Interaction between Intron and mRNA Leader Sequences Inhibits Initiation of HAC1 mRNA Translation in Yeast. J Biol Chem 290(36):21821-32 PMID:26175153
Visweswaraiah J, et al. (2015) The β-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. Elife 4:e07939 PMID:26134896
Lageix S, et al. (2014) Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells. PLoS Genet 10(5):e1004326 PMID:24811037
Rojas M, et al. (2014) Protein phosphatase PP1/GLC7 interaction domain in yeast eIF2γ bypasses targeting subunit requirement for eIF2α dephosphorylation. Proc Natl Acad Sci U S A 111(14):E1344-53 PMID:24706853
Dey M, et al. (2011) Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51. Proc Natl Acad Sci U S A 108(11):4316-21 PMID:21368187
Shin BS, et al. (2011) Structural integrity of {alpha}-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability. RNA 17(4):687-96 PMID:21335519
Dev K, et al. (2009) Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation. J Mol Biol 392(3):701-22 PMID:19616556
Gárriz A, et al. (2009) A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Mol Cell Biol 29(6):1592-607 PMID:19114556
Shin BS, et al. (2009) rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol Cell Biol 29(3):808-21 PMID:19029250
Lee KP, et al. (2008) Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132(1):89-100 PMID:18191223
Acker MG, et al. (2006) Interaction between eukaryotic initiation factors 1A and 5B is required for efficient ribosomal subunit joining. J Biol Chem 281(13):8469-75 PMID:16461768
Alone PV and Dever TE (2006) Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon. J Biol Chem 281(18):12636-44 PMID:16522633
Dey M, et al. (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 25(8):3063-75 PMID:15798194
Lee JH, et al. (2002) Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci U S A 99(26):16689-94 PMID:12471154
Shin BS, et al. (2002) Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111(7):1015-25 PMID:12507428
Zhan K, et al. (2002) Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for fesistance to environmental stresses. Mol Cell Biol 22(20):7134-46 PMID:12242291
Krishnamoorthy T, et al. (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21(15):5018-30 PMID:11438658
Searfoss A, et al. (2001) Linking the 3' poly(A) tail to the subunit joining step of translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and Ski2p-Slh1p. Mol Cell Biol 21(15):4900-8 PMID:11438647
Choi SK, et al. (2000) Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol Cell Biol 20(19):7183-91 PMID:10982835
Roll-Mecak A, et al. (2000) X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103(5):781-92 PMID:11114334
Lee JH, et al. (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A 96(8):4342-7 PMID:10200264
Choi SK, et al. (1998) Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280(5370):1757-60 PMID:9624054
Richter-Cook NJ, et al. (1998) Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J Biol Chem 273(13):7579-87 PMID:9516461
Romano PR, et al. (1998) Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol Cell Biol 18(12):7304-16 PMID:9819417
Kawagishi-Kobayashi M, et al. (1997) Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 17(7):4146-58 PMID:9199350
Dever TE, et al. (1995) Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes. Mol Cell Biol 15(11):6351-63 PMID:7565788
Dever TE, et al. (1993) Mammalian eukaryotic initiation factor 2 alpha kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc Natl Acad Sci U S A 90(10):4616-20 PMID:8099443
Vazquez de Aldana CR, et al. (1993) Mutations in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) that overcome the inhibitory effect of eIF-2 alpha phosphorylation on translation initiation. Proc Natl Acad Sci U S A 90(15):7215-9 PMID:8102207
Dever TE, et al. (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68(3):585-96 PMID:1739968
Wek RC, et al. (1992) Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 12(12):5700-10 PMID:1333044
Jaramillo M, et al. (1990) Translation initiation factors that function as RNA helicases from mammals, plants and yeast. Biochim Biophys Acta 1050(1-3):134-9 PMID:2169888