Stovicek V, et al. (2022) Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. Biotechnol Biofuels Bioprod 15(1):22 PMID:35219341
Dudnik A, et al. (2018) Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties. Curr Pharm Des 24(19):2208-2225 PMID:29766793
Strucko T, et al. (2018) Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab Eng 47:73-82 PMID:29534903
Rodriguez A, et al. (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245(Pt B):1645-1654 PMID:28634125
Beato FB, et al. (2016) Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Res 16(7) PMID:27609600
Kildegaard KR, et al. (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 15:53 PMID:26980206
Maury J, et al. (2016) EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 11(3):e0150394 PMID:26934490
Borodina I, et al. (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57-64 PMID:25447643
Stovicek V, et al. (2015) CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13-22 PMID:34150504
Jensen NB, et al. (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238-48 PMID:24151867
Kildegaard KR, et al. (2014) Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng 26:57-66 PMID:25263954
Famili I, et al. (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100(23):13134-9 PMID:14578455
Schilke B, et al. (1996) The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J Cell Biol 134(3):603-13 PMID:8707841