Iwami R, et al. (2023) TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 18(2):e0281233 PMID:36757926
Miyasaka S, et al. (2023) Taf1 N-terminal domain 2 (TAND2) of TFIID promotes formation of stable and mobile unstable TBP-TATA complexes. Gene 889:147800 PMID:37716588
Iwami R, et al. (2020) The function of Spt3, a subunit of the SAGA complex, in PGK1 transcription is restored only partially when reintroduced by plasmid into taf1 spt3 double mutant yeast strains. Genes Genet Syst 95(3):151-163 PMID:32624556
Kasahara K, et al. (2020) Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet 16(6):e1008865 PMID:32603360
Kasahara K, et al. (2019) Transcriptional activation is weakened when Taf1p N-terminal domain 1 is substituted with its Drosophila counterpart in yeast TFIID. Genes Genet Syst 94(1):51-59 PMID:30905891
Watanabe K and Kokubo T (2017) SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. PLoS One 12(11):e0188435 PMID:29176831
Kasahara K, et al. (2016) Oligomerization of Hmo1 mediated by box A is essential for DNA binding in vitro and in vivo. Genes Cells 21(12):1333-1352 PMID:27860073
Higashino A, et al. (2015) Both HMG boxes in Hmo1 are essential for DNA binding in vitro and in vivo. Biosci Biotechnol Biochem 79(3):384-93 PMID:25410521
Watanabe K, et al. (2015) A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. PLoS One 10(6):e0129357 PMID:26046838
Anandapadamanaban M, et al. (2013) High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nat Struct Mol Biol 20(8):1008-14 PMID:23851461
Kasahara K, et al. (2011) Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region. Nucleic Acids Res 39(10):4136-50 PMID:21288884
Kato Y, et al. (2011) Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 188(4):871-82 PMID:21625000
Sugihara F, et al. (2011) Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 39(1):59-75 PMID:20805245
Ohtsuki K, et al. (2010) Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters. Nucleic Acids Res 38(6):1805-20 PMID:20026583
Ohyama Y, et al. (2010) Saccharomyces cerevisiae Ssd1p promotes CLN2 expression by binding to the 5'-untranslated region of CLN2 mRNA. Genes Cells 15(12):1169-88 PMID:20977549
Takahashi H, et al. (2009) Saccharomyces cerevisiae Med9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells 14(1):53-67 PMID:19077037
Kasahara K, et al. (2008) Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 36(4):1343-57 PMID:18187511
Kasahara K, et al. (2007) Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol 27(19):6686-705 PMID:17646381
Mal TK, et al. (2007) Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J Biol Chem 282(30):22228-38 PMID:17553784
Kasahara K, et al. (2004) In vivo synthesis of Taf1p lacking the TAF N-terminal domain using alternative transcription or translation initiation sites. Genes Cells 9(8):709-21 PMID:15298679
Mal TK, et al. (2004) Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein. J Mol Biol 339(4):681-93 PMID:15165843
Takahata S, et al. (2004) Autonomous function of the amino-terminal inhibitory domain of TAF1 in transcriptional regulation. Mol Cell Biol 24(8):3089-99 PMID:15060133
Kobayashi A, et al. (2003) Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 31(4):1261-74 PMID:12582246
Ohdate H, et al. (2003) Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth. J Biol Chem 278(17):14647-56 PMID:12576485
Takahata S, et al. (2003) Identification of a novel TATA element-binding protein binding region at the N terminus of the Saccharomyces cerevisiae TAF1 protein. J Biol Chem 278(46):45888-902 PMID:12939271
Kobayashi A, et al. (2001) Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 276(1):395-405 PMID:11035037
Tsukihashi Y, et al. (2001) Requirement for yeast TAF145 function in transcriptional activation of the RPS5 promoter that depends on both core promoter structure and upstream activating sequences. J Biol Chem 276(28):25715-26 PMID:11337503
Kotani T, et al. (2000) A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID. Proc Natl Acad Sci U S A 97(13):7178-83 PMID:10852950
Tsukihashi Y, et al. (2000) Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 20(7):2385-99 PMID:10713163
Drysdale CM, et al. (1998) The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol Cell Biol 18(3):1711-24 PMID:9488488
Kotani T, et al. (1998) Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. J Biol Chem 273(48):32254-64 PMID:9822704
Liu D, et al. (1998) Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94(5):573-83 PMID:9741622