MacDiarmid CW, et al. (2024) Restricted glycolysis is a primary cause of the reduced growth rate of zinc-deficient yeast cells. J Biol Chem 300(4):107147 PMID:38460940
Tatip S, et al. (2020) Changes in transcription start sites of Zap1-regulated genes during zinc deficiency: Implications for HNT1 gene regulation. Mol Microbiol 113(1):285-296 PMID:31692084
Hanner AS, et al. (2019) Elevation of cellular Mg2+ levels by the Mg2+ transporter, Alr1, supports growth of polyamine-deficient Saccharomyces cerevisiae cells. J Biol Chem 294(45):17131-17142 PMID:31548311
Taggart J, et al. (2017) Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae. Mol Microbiol 106(5):678-689 PMID:28963784
MacDiarmid CW, et al. (2016) Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth. J Biol Chem 291(36):18880-96 PMID:27432887
Mith O, et al. (2015) The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen 4(3):409-22 PMID:25755096
MacDiarmid CW, et al. (2013) Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J Biol Chem 288(43):31313-27 PMID:24022485
Ellis CD, et al. (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166(3):325-35 PMID:15277543
MacDiarmid CW, et al. (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278(17):15065-72 PMID:12556516
MacDiarmid CW, et al. (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277(42):39187-94 PMID:12161436
MacDiarmid CW and Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273(3):1727-32 PMID:9430719