Geisberg JV, et al. (2024) Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 121(21):e2405827121 PMID:38748572
Geisberg JV, et al. (2024) Location of polyadenylation sites within 3' untranslated regions is linked to biological function in yeast. Genetics 228(4) PMID:39383179
Geisberg JV, et al. (2023) Condition-specific 3' mRNA isoform half-lives and stability elements in yeast. Proc Natl Acad Sci U S A 120(18):e2301117120 PMID:37094136
Moqtaderi Z, et al. (2022) A compensatory link between cleavage/polyadenylation and mRNA turnover regulates steady-state mRNA levels in yeast. Proc Natl Acad Sci U S A 119(4) PMID:35058367
Moqtaderi Z, et al. (2018) Extensive Structural Differences of Closely Related 3' mRNA Isoforms: Links to Pab1 Binding and mRNA Stability. Mol Cell 72(5):849-861.e6 PMID:30318446
Geisberg JV, et al. (2014) Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156(4):812-24 PMID:24529382
Moqtaderi Z, et al. (2014) Secondary structures involving the poly(A) tail and other 3' sequences are major determinants of mRNA isoform stability in yeast. Microb Cell 1(4):137-139 PMID:25279376
Moqtaderi Z and Geisberg JV (2013) Construction of mutant alleles in Saccharomyces cerevisiae without cloning: overview and the delitto perfetto method. Curr Protoc Mol Biol 104:13.10C.1-13.10C.17 PMID:24510296
Moqtaderi Z, et al. (2013) Species-specific factors mediate extensive heterogeneity of mRNA 3' ends in yeasts. Proc Natl Acad Sci U S A 110(27):11073-8 PMID:23776204
Esberg A, et al. (2011) Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One 6(6):e20829 PMID:21695216
Fan X, et al. (2010) Nucleosome depletion at yeast terminators is not intrinsic and can occur by a transcriptional mechanism linked to 3'-end formation. Proc Natl Acad Sci U S A 107(42):17945-50 PMID:20921369
Locke G, et al. (2010) High-throughput sequencing reveals a simple model of nucleosome energetics. Proc Natl Acad Sci U S A 107(49):20998-1003 PMID:21084631
Zhang Y, et al. (2010) Evidence against a genomic code for nucleosome positioning. Reply to "Nucleosome sequence preferences influence in vivo nucleosome organization.". Nat Struct Mol Biol 17(8):920-3 PMID:20683474
Zhang Y, et al. (2009) Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16(8):847-52 PMID:19620965
Sekinger EA, et al. (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18(6):735-48 PMID:15949447
Moqtaderi Z and Struhl K (2004) Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol 24(10):4118-27 PMID:15121834
Geisberg JV, et al. (2002) Mot1 associates with transcriptionally active promoters and inhibits association of NC2 in Saccharomyces cerevisiae. Mol Cell Biol 22(23):8122-34 PMID:12417716
Moqtaderi Z, et al. (1996) TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383(6596):188-91 PMID:8774887