García-Marcelo MJ, et al. (2025) Measurement of rRNA Synthesis and Degradation Rates by 3H-Uracil Labeling in Yeast. Methods Mol Biol 2863:183-204 PMID:39535711
Jordán-Pla A, et al. (2025) Proper 5'-3' cotranslational mRNA decay in yeast requires import of Xrn1 to the nucleus. PLoS One 20(1):e0308195 PMID:39841709
Kelbert M, et al. (2024) The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. Elife 12 PMID:39356734
Pérez-Ortín JE, et al. (2024) Influence of cell volume on the gene transcription rate. Biochim Biophys Acta Gene Regul Mech 1867(1):195008 PMID:38246270
Pérez-Ortín JE, et al. (2024) Comparison of Xrn1 and Rat1 5' → 3' exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay. Yeast 41(7):458-472 PMID:38874348
Arnau V, et al. (2022) A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection. PLoS One 17(9):e0272878 PMID:36048821
Jordán-Pla A and Pérez-Ortín JE (2022) High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq. Methods Mol Biol 2477:57-70 PMID:35524111
Romero AM, et al. (2022) Changes in mRNA stability play an important role in the adaptation of yeast cells to iron deprivation. Biochim Biophys Acta Gene Regul Mech 1865(2):194800 PMID:35218933
Begley V, et al. (2021) Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biol 18(9):1310-1323 PMID:33138675
Forés-Martos J, et al. (2021) A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them. Cells 10(2) PMID:33562654
García-Martínez J, et al. (2021) Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 18(10):1458-1474 PMID:33258404
García-Martínez J, et al. (2021) The total mRNA concentration buffering system in yeast is global rather than gene-specific. RNA 27(10):1281-1290 PMID:34272303
Garrido-Godino AI, et al. (2021) Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 18(8):1206-1220 PMID:33094674
Pérez-Ortín JE, et al. (2021) Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet 17(4):e1009520 PMID:33826644
Begley V, et al. (2019) The mRNA degradation factor Xrn1 regulates transcription elongation in parallel to Ccr4. Nucleic Acids Res 47(18):9524-9541 PMID:31392315
Calvo O, et al. (2019) The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 47(12):6250-6268 PMID:31006804
Pérez-Ortín JE, et al. (2019) Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability. RNA Biol 16(12):1659-1666 PMID:31418631
Romero AM, et al. (2019) A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. Biochim Biophys Acta Gene Regul Mech 1862(9):194414 PMID:31394264
Oliete-Calvo P, et al. (2018) A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 19(11) PMID:30249596
Benet M, et al. (2017) Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. Biochim Biophys Acta Gene Regul Mech 1860(7):794-802 PMID:28461260
Gutiérrez G, et al. (2017) Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics Chromatin 10(1):58 PMID:29212533
Gómez-Herreros F, et al. (2017) The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Res 45(16):9302-9318 PMID:28637236
Mena A, et al. (2017) Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 45(21):12401-12412 PMID:29069448
Miguel A, et al. (2017) Corrigendum to "External conditions inversely change the RNA polymerase II elongation rate and density in yeast" [Biochim. Biophys. Acta 1829/11 (2013) 1248-1255]. Biochim Biophys Acta Gene Regul Mech 1860(2):289 PMID:27875711
García-Martínez J, et al. (2016) The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons. Nucleic Acids Res 44(8):3643-58 PMID:26717982
Garrido-Godino AI, et al. (2016) Rpb1 foot mutations demonstrate a major role of Rpb4 in mRNA stability during stress situations in yeast. Biochim Biophys Acta 1859(5):731-43 PMID:27001033
Jordán-Pla A, et al. (2016) Biotin-Genomic Run-On (Bio-GRO): A High-Resolution Method for the Analysis of Nascent Transcription in Yeast. Methods Mol Biol 1361:125-39 PMID:26483020
Li T, et al. (2016) The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. Biochim Biophys Acta 1859(2):405-19 PMID:26775127
Barbosa C, et al. (2015) Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 10(4):e0122709 PMID:25884705
Canadell D, et al. (2015) Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849(6):653-64 PMID:25900709
Jordán-Pla A, et al. (2015) Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle. Nucleic Acids Res 43(2):787-802 PMID:25550430
Garre E, et al. (2013) Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 8(4):e61240 PMID:23620734
Miguel A, et al. (2013) External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochim Biophys Acta 1829(11):1248-55 PMID:24103494
Pérez-Ortín JE, et al. (2013) What do you mean by transcription rate?: the conceptual difference between nascent transcription rate and mRNA synthesis rate is essential for the proper understanding of transcriptomic analyses. Bioessays 35(12):1056-62 PMID:24105897
García-Martínez J, et al. (2012) The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription 3(1):39-44 PMID:22456320
Castells-Roca L, et al. (2011) Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 6(2):e17272 PMID:21364882
García-López MC, et al. (2011) The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. Genetics 189(4):1235-48 PMID:21954159
Bermúdez I, et al. (2010) A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 38(19):e182 PMID:20685815
Rodríguez-Gil A, et al. (2010) The distribution of active RNA polymerase II along the transcribed region is gene-specific and controlled by elongation factors. Nucleic Acids Res 38(14):4651-64 PMID:20385590
Belloch C, et al. (2009) Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 75(8):2534-44 PMID:19251887
Romero-Santacreu L, et al. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15(6):1110-20 PMID:19369426
Grund SE, et al. (2008) The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression. J Cell Biol 182(5):897-910 PMID:18762579
Solieri L, et al. (2008) Mitochondrial inheritance and fermentative : oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25(7):485-500 PMID:18615860
Mendes-Ferreira A, et al. (2007) Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 73(9):3049-60 PMID:17337556
Mendes-Ferreira A, et al. (2007) Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl Environ Microbiol 73(16):5363-9 PMID:17601813
Alberola TM, et al. (2004) A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: features and uses. Int Microbiol 7(3):199-206 PMID:15492934
Bellí G, et al. (2004) Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of specific sets of genes. J Biol Chem 279(13):12386-95 PMID:14722110
Rodríguez-Navarro S, et al. (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1):75-86 PMID:14718168
Carrasco P, et al. (2003) Arginase activity is a useful marker of nitrogen limitation during alcoholic fermentations. Syst Appl Microbiol 26(3):471-9 PMID:14529191
Pérez-Ortín JE, et al. (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12(10):1533-9 PMID:12368245
Pérez-Torrado R, et al. (2002) Study of the first hours of microvinification by the use of osmotic stress-response genes as probes. Syst Appl Microbiol 25(1):153-61 PMID:12086182
Rodríguez-Navarro S, et al. (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19(14):1261-76 PMID:12271461
Puig S and Pérez-Ortín JE (2000) Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast 16(2):139-48 PMID:10641036
Puig S and Pérez-Ortín JE (2000) Expression levels and patterns of glycolytic yeast genes during wine fermentation. Syst Appl Microbiol 23(2):300-3 PMID:10930084
Puig S, et al. (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66(5):2057-61 PMID:10788381
Ivorra C, et al. (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64(6):698-708 PMID:10417219
Puig S, et al. (1999) Transcriptional and structural study of a region of two convergent overlapping yeast genes. Curr Microbiol 39(6):369-0373 PMID:10525844
Puig S, et al. (1999) Stochastic nucleosome positioning in a yeast chromatin region is not dependent on histone H1. Curr Microbiol 39(3):168-72 PMID:10441732
Aranda A, et al. (1998) The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Res 26(20):4588-96 PMID:9753725
Aranda A, et al. (1998) Transcription termination downstream of the Saccharomyces cerevisiae FBP1 [changed from FPB1] poly(A) site does not depend on efficient 3'end processing. RNA 4(3):303-18 PMID:9510332
Ruiz-García AB, et al. (1998) HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem 273(20):12599-605 PMID:9575221
del Olmo M and Pérez-Ortín JE (1993) A natural A/T-rich sequence from the yeast FBP1 gene exists as a cruciform in Escherichia coli cells. Plasmid 29(3):222-32 PMID:8356116
del Olmo ML, et al. (1993) Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions. Yeast 9(11):1229-40 PMID:8109172
Igual JC, et al. (1992) The POT1 gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation. Mol Microbiol 6(14):1867-75 PMID:1354832
Pérez-Ortín JE, et al. (1987) Fine analysis of the chromatin structure of the yeast SUC2 gene and of its changes upon derepression. Comparison between the chromosomal and plasmid-inserted genes. Nucleic Acids Res 15(17):6937-56 PMID:2821486