Miller JM, et al. (2024) Loss of transcriptional regulator of phospholipid biosynthesis alters post-translational modification of Sec61 translocon beta subunit Sbh1 in Saccharomyces cerevisiae. MicroPubl Biol 2024 PMID:39071171
Owutey SL, et al. (2024) Endoplasmic reticulum and inner nuclear membrane ubiquitin-conjugating enzymes Ubc6 and Ubc7 confer resistance to hygromycin B in Saccharomyces cerevisiae. MicroPubl Biol 2024 PMID:39139584
Daraghmi MM, et al. (2023) Macro-ER-phagy receptors Atg39p and Atg40p confer resistance to aminoglycoside hygromycin B in S. cerevisiae. MicroPubl Biol 2023 PMID:36818312
Runnebohm AM, et al. (2023) Methionine Restriction Impairs Degradation of a Protein that Aberrantly Engages the Endoplasmic Reticulum Translocon. MicroPubl Biol 2023 PMID:38021175
Doss EM, et al. (2022) APC/C Cdh1p and Slx5p/Slx8p ubiquitin ligases confer resistance to aminoglycoside hygromycin B in Saccharomyces cerevisiae. MicroPubl Biol 2022 PMID:35622489
Woodruff KA, et al. (2021) Inner Nuclear Membrane Asi Ubiquitin Ligase Catalytic Subunits Asi1p and Asi3p, but not Asi2p, confer resistance to aminoglycoside hygromycin B in Saccharomyces cerevisiae. MicroPubl Biol 2021 PMID:34095778
Richards KA and Rubenstein EM (2020) Endoplasmic reticulum stress-regulated degradation of a translocon-associated protein is independent of integrated stress response transcription factor Gcn4p. MicroPubl Biol 2020 PMID:32550483
Runnebohm AM, et al. (2020) Overlapping function of Hrd1 and Ste24 in translocon quality control provides robust channel surveillance. J Biol Chem 295(47):16113-16120 PMID:33033070
Runnebohm AM, et al. (2020) Loss of protein quality control gene UBR1 sensitizes Saccharomyces cerevisiae to the aminoglycoside hygromycin B. Fine Focus 6(1):76-83 PMID:33554225
Engle SM, et al. (2017) Acetylation of N-terminus and two internal amino acids is dispensable for degradation of a protein that aberrantly engages the endoplasmic reticulum translocon. PeerJ 5:e3728 PMID:28848693
Watts SG, et al. (2015) Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae. J Vis Exp e52428 PMID:25742191
Zattas D, et al. (2013) N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. Mol Biol Cell 24(7):890-900 PMID:23363603
Rubenstein EM, et al. (2012) Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. J Cell Biol 197(6):761-73 PMID:22689655
Rubenstein EM and Hochstrasser M (2010) Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle 9(21):4282-5 PMID:20980825
Xie Y, et al. (2010) SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes Dev 24(9):893-903 PMID:20388728
Rubenstein EM, et al. (2008) Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 283(1):222-230 PMID:17991748
Elbing K, et al. (2006) Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity. J Biol Chem 281(36):26170-80 PMID:16847059
McCartney RR, et al. (2005) Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr Genet 47(6):335-44 PMID:15824893