Li BZ and Yuan YJ (2024) Enhancing whole yeast genome rearrangements through multiple LoxPsym sequences. Sci China Life Sci 67(9):2045-2047 PMID:38856790
Ma Y, et al. (2024) Convenient synthesis and delivery of a megabase-scale designer accessory chromosome empower biosynthetic capacity. Cell Res 34(4):309-322 PMID:38332200
Ding YW, et al. (2023) Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae. Synth Syst Biotechnol 8(1):46-53 PMID:36408203
Huang ZR, et al. (2023) Enhanced single-base mutation diversity by the combination of cytidine deaminase with DNA-repairing enzymes in yeast. Biotechnol J 18(11):e2300137 PMID:37529889
Jin J, et al. (2022) Combining nucleotide variations and structure variations for improving astaxanthin biosynthesis. Microb Cell Fact 21(1):79 PMID:35527251
Zhou J, et al. (2022) Exogenous artificial DNA forms chromatin structure with active transcription in yeast. Sci China Life Sci 65(5):851-860 PMID:34970711
Guo XJ, et al. (2021) Compartmentalized Reconstitution of Post-squalene Pathway for 7-Dehydrocholesterol Overproduction in Saccharomyces cerevisiae. Front Microbiol 12:663973 PMID:34093477
Tan YS, et al. (2021) Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae. Biotechnol Biofuels 14(1):241 PMID:34920742
Chen S, et al. (2020) Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution. FEMS Yeast Res 20(2) PMID:32188997
Qi DD, et al. (2020) In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast. Microb Cell Fact 19(1):103 PMID:32398013
Qin L, et al. (2020) Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 61:160-170 PMID:32553944
Wang P, et al. (2020) SCRaMbLEing of a Synthetic Yeast Chromosome with Clustered Essential Genes Reveals Synthetic Lethal Interactions. ACS Synth Biol 9(5):1181-1189 PMID:32268063
Zeng BX, et al. (2020) Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production. Front Bioeng Biotechnol 8:152 PMID:32258005
Cheng S, et al. (2019) Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae. ACS Synth Biol 8(5):968-975 PMID:31063692
Pan S, et al. (2018) Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae. Biotechnol Biofuels 11:107 PMID:29643937
Qin L, et al. (2018) Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels 11:118 PMID:29713377
Song TQ, et al. (2017) Engineering Saccharomyces cerevisiae for geranylgeraniol overproduction by combinatorial design. Sci Rep 7(1):14991 PMID:29118396
Wu XL, et al. (2017) Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae. Biotechnol Biofuels 10:189 PMID:28729884
Zhu JQ, et al. (2016) In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Bioresour Technol 218:380-7 PMID:27387414
Lin Q, et al. (2015) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth Biol 4(3):213-20 PMID:24895839
Shen MH, et al. (2015) Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett 37(5):1031-6 PMID:25548118
Su W, et al. (2015) Alleviating Redox Imbalance Enhances 7-Dehydrocholesterol Production in Engineered Saccharomyces cerevisiae. PLoS One 10(6):e0130840 PMID:26098102
Wang X, et al. (2015) Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels 8:142 PMID:26379774
Zhu JQ, et al. (2015) Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast. Bioresour Technol 198:39-46 PMID:26363500
Ding MZ, et al. (2014) Biosynthesis of Taxadiene in Saccharomyces cerevisiae : selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One 9(10):e109348 PMID:25295588
Liu ZH, et al. (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7(1):167 PMID:25516770
Wang X, et al. (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111(1):152-64 PMID:24404570
Zhu JQ, et al. (2014) Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Bioresour Technol 169:9-18 PMID:25016219
Wang X, et al. (2013) Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. OMICS 17(3):150-9 PMID:23421908
Zha J, et al. (2013) Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 8(7):e68317 PMID:23844185
Ding MZ, et al. (2012) Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One 7(8):e43474 PMID:22952687
Yang J, et al. (2012) Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol. OMICS 16(7-8):374-86 PMID:22734833
Zha J, et al. (2012) Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Front Microbiol 3:355 PMID:23060871
Ding MZ, et al. (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15(10):647-53 PMID:21978393
Xia J, et al. (2011) Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnol Bioeng 108(1):12-21 PMID:20803565
Li BZ and Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1915-24 PMID:20309542
Li BZ, et al. (2010) Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 148(4):194-203 PMID:20561546
Li BZ, et al. (2010) Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol 37(1):43-55 PMID:19821132
Cheng JS, et al. (2009) Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 83(5):909-23 PMID:19488749
Ding MZ, et al. (2009) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144(4):279-86 PMID:19808067
Lin FM, et al. (2009) Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 9(24):5471-83 PMID:19834894
Lin FM, et al. (2009) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75(11):3765-76 PMID:19363068
Xia JM and Yuan YJ (2009) Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. J Agric Food Chem 57(1):99-108 PMID:19049411
Yuan YJ, et al. (2000) Dynamics of ethanol translocation in Saccharomyces cerevisiae as detected by (13)C-NMR. Biochim Biophys Acta 1474(3):269-72 PMID:10779677