Reference: Kaouass M, et al. (1998) The spermidine transport system is regulated by ligand inactivation, endocytosis, and by the Npr1p Ser/Thr protein kinase in Saccharomyces cerevisiae. J Biol Chem 273(4):2109-17

Reference Help

Abstract


We have characterized the regulation of spermidine transport in yeast and identified some of the genes involved in its control. Disruption of the SPE2 gene encoding S-adenosylmethionine decarboxylase, which catalyzes an essential step in polyamine biosynthesis, upregulated the initial velocity of spermidine uptake in wild-type cells as well as in the polyamine transport-deficient pcp1 mutants. Exogenous spermidine rapidly inactivated spermidine transport with a half-life of approximately 10-15 min via a process that did not require de novo protein synthesis but was accelerated by cycloheximide addition. Conversely, reactivation of spermidine influx upon polyamine deprivation required active protein synthesis. The stability of polyamine carrier activity was increased 2-fold in polyamine-depleted spe2 deletion mutants, indicating that endogenous polyamines also contribute to the down-regulation of spermidine transport. Ligand-mediated repression of spermidine transport was delayed in end3 and end4 mutants that are deficient in the initial steps of the endocytic pathway, and spermidine uptake activity was increased 4- to 5-fold in end3 mutants relative to parental cells, although the stability of the transport system was similar in both strains. Disruption of the NPR1 gene, which encodes a putative Ser/Thr protein kinase essential for the reactivation of several nitrogen permeases, resulted in a 3-fold decrease in spermidine transport in NH4(+)-rich media but did not prevent its down-regulation by spermidine. The defect in spermidine transport was more pronounced in NH4(+)- than proline-grown npr1 cells, suggesting that NPR1 protects against nitrogen catabolite repression of polyamine uptake activity. These results suggest that (a) the polyamine carrier is an unstable protein subject to down-regulation by spermidine via a process involving ligand inactivation followed by endocytosis and that (b) NPR1 expression fully prevents nitrogen catabolite repression of polyamine transport, unlike the role predicted for that gene by the inactivation/reactivation model proposed for other nitrogen permeases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kaouass M, Gamache I, Ramotar D, Audette M, Poulin R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference