Reference: Byrd J, et al. (1988) Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants. J Biol Chem 263(14):6688-94

Reference Help

Abstract


Cu-metallothionein was purified from Saccharomyces cerevisiae harboring plasmids containing mutated CUP1 metallothionein genes resulting in deletions at the carboxy-terminal end of the polypeptide. The truncated polypeptides are recovered as polypeptides of 35 and 48 residues in length. The Cu-S cluster in the wild-type metallothionein and the two truncates were characterized. The truncated proteins, designated T35 and T48, contain 4 and 2 fewer cysteinyl residues, respectively, compared to the 12 cysteines in wild-type metallothionein; yet the mutant molecules bind Cu(I) ions in a stoichiometry comparable to the wild-type protein, i.e. 7-8 mol eq. The Cu(I) ions bound to T48 are as tenaciously bound as those bound to the wild-type molecule. The electronic transitions in the ultraviolet are similar for Cu-T48 and the wild-type protein. Both mutants and wild-type Cu-protein exhibit luminescence. The corrected emission maxima occurs at 609 nm with a corrected excitation peak near 277 nm. The luminescence quantum yield and lifetime of fluorescence decay of Cu-T48 and wild-type Cu-metallothionein are similar. The absolute quantum yield of the wild-type Cu-protein luminescence is 0.0058 and has a 440-ns lifetime. The similar fluorescence rate constant in the two molecules suggests they possess a similar chromophore. The Cu-T35 protein is more labile than Cu-T48 or the wild-type protein in the association of Cu(I) ions and the air sensitivity of the electronic transitions and luminescence. Although T48 lacks 2 of the 12 cysteines in the wild-type protein, we are unable to detect any differences in the properties of the native metal clusters in the two molecules; T35 lacking 4 cysteinyl residues forms a Cu(I) cluster with properties significantly different from the wild-type molecule. Properties of the Cu-thiolate cluster were also studied in Cu(I)-reconstituted samples. The cluster in wild-type metallothionein forms in all-or-nothing fashion. This conclusion is based on copper binding stoichiometry and luminescence studies. The relative quantum yield of samples with intermediate Cu(I) levels was constant, consistent with all-or-none cluster formation.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Byrd J, Berger RM, McMillin DR, Wright CF, Hamer D, Winge DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference