Reference: Mezard C and Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 14(2):1278-92

Reference Help

Abstract


Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions (the rare transformants which are obtained contain plasmids resulting from deletion-forming intramolecular events involving little or no sequence homology); (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Mezard C, Nicolas A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference