Reference: Winge DR (1998) Copper-regulatory domain involved in gene expression. Prog Nucleic Acid Res Mol Biol 58:165-95

Reference Help

Abstract


Copper ion homeostasis in yeast is maintained through regulated expression of genes involved in copper ion uptake, Cu(I) sequestration, and defense against reactive oxygen intermediates. Positive and negative copper ion regulation is observed, and both effects are mediated by Cu(I)-sensing transcription factors. The mechanism of Cu(I) regulation is distinct for transcriptional activation versus transcriptional repression. Cu(I) activation of gene expression in S. cerevisiae and C. glabrata occurs through Cu-regulated DNA binding. The activation process involves Cu(I) cluster formation within the regulatory domain in Ace1 and Amt1. Cu(I) binding stabilizes a specific conformation capable of high-affinity interaction with specific DNA promoter sequences. Cu(I)-activated transcription factors are modular proteins in which the DNA-binding domain is distinct from the domain that mediates transcriptional activation. The all-or-nothing formation of the polycopper cluster permits a graded response of the cell to environmental copper. Cu(I) triggering may involve a metal exchange reaction converting Ace1 from a Zn(II)-specific conformer to a clustered Cu(I) conformer. The Cu(I) regulatory domain occurs in transcription factors from S. cerevisiae and C. glabrata. Sequence homologs are also known in Y. lipolytica and S. pombe, although no functional information is available for these candidate regulatory molecules. The presence of the Cu(I) regulatory domain in four distinct yeast strains suggests that this Cu-responsive domain may occur in other eukaryotes. Cu-mediated repression of gene expression in S. cerevisiae occurs through Cu(I) regulation of Mac1. Cu(I) binding to Mac1 appears to inhibit the transactivation domain. The Cu(I) specificity of this repression is likely to arise from formation of a polycopper thiolate cluster.

Reference Type
Journal Article | Review
Authors
Winge DR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference