Reference: Colson AM and Slonimski PP (1979) Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae. Mol Gen Genet 167(3):287-98

Reference Help

Abstract


Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous segments of the mitochondrial DNA sequence which code for a single polypeptide sequence of cytochrome b. In each segment mutations which modify the polypeptide sequence can occur leading to the loss (BOX mutants) or to a modification (drug resistant mutants) of the enzyme activity.

Reference Type
Journal Article
Authors
Colson AM, Slonimski PP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference