Reference: Ba Y, et al. (2000) Transcriptional slippage of p53 gene enhanced by cellular damage in rat liver: monitoring the slippage by a yeast functional assay. Mutat Res 447(2):209-20

Reference Help

Abstract


The Long-Evans Cinnamon (LEC) rat is a mutant strain characterized by abnormal copper metabolism and a high incidence of hepatitis and hepatoma. Using a yeast-based assay which scores mutants in p53 gene transcripts as red colonies, we detected frequent mutations in the liver of LEC rats. The majority (50-60%) of these were frameshift mutations caused by the insertion of an extra adenine (A) in the regions containing six consecutive adenines. The rate of A insertion was calculated to be 6.9-9.0% of the total p53 cDNA. Insertions of an extra adenine were found almost exclusively in the mRNA (cDNA), especially in the (A)(6) tract located at the most 5'-side (exon 4) among the three (A)(6) tracts (exons 4, 7, and 8), but rarely in the corresponding sites of genomic DNA. Wild-type p53 cDNA was transcribed in vitro into mRNA with the use of SP6 RNA polymerase and tested by the yeast functional assay. Subsequent sequencing detected A insertions at an overall rate of 1.6% in exons 7 and 8 but none in exon 4. This indicates that the A insertion in the exon 4 (A)(6) tract was an in vivo phenomenon rather than an artifact in reverse transcription or polymerase chain reaction. The percentage of red colonies increased sharply to about 20% of the liver samples in the acute hepatitis stage, and returned to control level of those in the chronic hepatitis stage, and increased again slightly to those in the neoplastic stage. The percentage of red colonies correlated with the serum GOT level (r=0.96, p<0.001) but not with the contents of copper and 8-hydroxydeoxyguanosine in the liver of LEC rats. Ethanol treatment of hepatic cell lines also increased the rate of transcriptional slippage at the (A)(6) tract. These findings indicate that cellular damage is responsible for the increase in the rate of mutation at the transcriptional level, and suggest that cellular damage degrades transcriptional fidelity, thereby further impairing cellular functions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ba Y, Tonoki H, Tada M, Nakata D, Hamada J, Moriuchi T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference