Reference: Fu H, et al. (1999) Structure and functional analysis of the 26S proteasome subunits from plants. Mol Biol Rep 26(1-2):137-46

Reference Help

Abstract


As initial steps to define how the 26S proteasome degrades ubiquitinated proteins in plants, we have characterized many of the subunits that comprise the proteolytic complex from Arabidopsis thaliana. A set of 23 Arabidopsis genes encoding the full complement of core particle (CP) subunits and a collection encoding 12 out of 18 known eukaryotic regulatory particle (RP) subunits, including six AAA-ATPase subunits, were identified. Several of these 26S proteasome genes could complement yeast strains missing the corresponding orthologs. Using this ability of plant subunits to functionally replace yeast counterparts, a parallel structure/function analysis was performed with the RP subunit RPN 10/MCB1, a putative receptor for ubiquitin conjugates. RPN10 is not essential for yeast viability but is required for amino acid analog tolerance and degradation of proteins via the ubiquitin-fusion degradation pathway, a subpathway within the ubiquitin system. Surprisingly, we found that the C-terminal motif required for conjugate recognition by RPN10 is not essential for in vivo functions. Instead, a domain near the N-terminus is required. We have begun to exploit the moss Physcomitrella patens as a model to characterize the plant 26S proteasome using reverse genetics. By homologous recombination, we have successfully disrupted the RPN10 gene. Unlike yeast rpn10delta strains which grow normally, Physcomitrella rpn10delta strains are developmentally arrested, being unable to initiate gametophorogenesis. Further analysis of these mutants revealed that RPN10 is likely required for a developmental program triggered by plant hormones.

Reference Type
Journal Article | Review
Authors
Fu H, Girod PA, Doelling JH, van Nocker S, Hochstrasser M, Finley D, Vierstra RD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference