Reference: Dangi B, et al. (1998) The origin of differences in the physical properties of the equilibrium forms of cytochrome b5 revealed through high-resolution NMR structures and backbone dynamic analyses. Biochemistry 37(23):8289-302

Reference Help

Abstract


On the basis of a comparison of high-resolution solution structures calculated for both equilibrium forms of rat ferrocytochrome b5, differences in reduction potential and thermodyanmic stability have been characterized in terms of significant structural and dynamic differences between the two forms. The dominant difference between A and B conformations has long been known to be due to a 180 degrees rotation of the heme in the binding pocket about an axis defined by the alpha- and gamma-meso carbons, however, the B form has not been structurally characterized until now. The most significant differences observed between the two forms were the presence of a hydrogen bond between the 7-propionate and the S64 amide in the A form but not the B form and surprisingly a displacement of the heme out of the binding pocket by 0.9 A in the B form relative to the A form. The magnitude of other factors which could contribute to the known difference in reduction potentials in the bovine protein [Walker, F. A., Emrick, D., Rivera, J. E., Hanquet, B. J., and Buttlaire, D. H. (1988) J. Am. Chem. Soc. 110, 6234-6240], such as differences in the orientation of the axial imidazoles and differences in hydrogen bond strength to the imidazoles, have been evaluated. The dominant effector of the reduction potential would appear to be the lack of the hydrogen bond to the S64 amide in the B form which frees up the propionate to charge stabilize the iron in the oxidized state and thus lower the reduction potential of the B form. The structure we report for the A form, based on heteronuclear NMR restraints, involving a total of 1288 restraints strongly resembles both the X-ray crystal structure of the bovine protein and a recently reported structure for the A form of the rat protein based on homonuclear data alone [Banci, L., Bertini, I., Ferroni, F., and Rosato, A. (1997) Eur. J. Biochem. 249, 270-279]. The rmsd for the backbone atoms of the A form is 0.54 A (0.92 A for all non-hydrogens). The rmsd for the backbone of the B form is 0.51 A (0. 90 A for all non-hydrogen atoms). An analysis of backbone dynamics based on a model-free analysis of 15N relaxation data, which incorporated axially symmetric diffusion tensor modeling of the cytochrome, indicates that the protein is more rigid in the reduced state relative to the oxidized state, based on a comparison with order parameters reported for the bovine protein in the oxidized state [Kelly, G. P., Muskett, F. W., and Whitford, D. (1997) Eur. J. Biochem. 245, 349-354].

Reference Type
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Dangi B, Sarma S, Yan C, Banville DL, Guiles RD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference