Reference: Ito Y, et al. (1997) Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein. Biochemistry 36(30):9109-19

Reference Help

Abstract


The backbone 1H, 13C, and 15N resonances of the c-Ha-Ras protein [a truncated version consisting of residues 1-171, Ras(1-171)] bound with GMPPNP (a slowly hydrolyzable analogue of GTP) were assigned and compared with those of the GDP-bound Ras(1-171). The backbone amide resonances of amino acid residues 10-13, 21, 31-39, 57-64, and 71 of Ras(1-171).GMPPNP, but not those of Ras(1-171).GDP, were extremely broadened, whereas other residues of Ras(1-171).GMPPNP exhibited amide resonances nearly as sharp as those of Ras(1-171). GDP. The residues exhibiting the extreme broadening, except for residues 21 and 71, are localized in three functional loop regions [loops L1, L2 (switch I), and L4 (switch II)], which are involved in hydrolysis of GTP and interactions with other proteins. From the temperature and magnetic field strength dependencies of the backbone amide resonance intensities, the extreme broadening was ascribed to the exchange at an intermediate rate on the NMR time scale. It was shown that the Ras(1-171) protein bound with GTP or GTPgammaS (another slowly hydrolyzable analogue of GTP) exhibits the same type of broadening. Therefore, it is a characteristic feature of the GTP-bound form of Ras that the L1, L2, and L4 loop regions, but not other regions, are in a rather slow interconversion between two or more stable conformers. This phenomenon, termed a "regional polysterism", of these loop regions may be related with their multifunctionality: the GTP-dependent interactions with several downstream target groups such as the Raf and RalGDS families and also with the GTPase activating protein (GAP) family. In fact, the binding of Ras(1-171).GMPPNP with the Ras-binding domain (residues 51-131) of c-Raf-1 was shown to eliminate the regional polysterism nearly completely. It was indicated, therefore, that each target/regulator selects its appropriate conformer among those presented by the "polysteric" binding interface of Ras. As the downstream target groups exhibit no apparent sequence homology to each other, it is possible that one target group prefers a conformer different from that preferred by another group. The involvement of loop L1 in the regional polysterism might suggest that the negative regulators, GAPs, bind to the polysteric binding interface (loops L2 and L4) of Ras and cooperatively select a conformer suitable for transition of the GTPase catalytic center, involving loops L1 and L4, into the highly active state.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Ito Y, Yamasaki K, Iwahara J, Terada T, Kamiya A, Shirouzu M, Muto Y, Kawai G, Yokoyama S, Laue ED, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference