To better understand the contributions that the structural maintenance of chromosome proteins (SMCs) make to condensin activity, we have tested a number of biochemical, biophysical, and DNA-associated attributes of the Smc2p-Smc4p pair from budding yeast. Smc2p and Smc4p form a stable heterodimer, the "Smc2/4 complex," which upon analysis by sedimentation equilibrium appears to reversibly self-associate to form heterotetramers. Individually, neither Smc2p nor Smc4p hydrolyzes ATP; however, ATPase activity is recovered by equal molar mixing of both purified proteins. Hydrolysis activity is unaffected by the presence of DNA. Smc2/4 binds both linearized and circular plasmids, and the binding appears to be independent of adenylate nucleotide. High mole ratios of Smc2/4 to plasmid promote a geometric change in circular DNA that can be trapped as knots by type II topoisomerases but not as supercoils by a type I topoisomerase. Binding titration analyses reveal that two Smc2/4-DNA-bound states exist, one disrupted by and one resistant to salt challenge. Competition-displacement experiments show that Smc2/4-DNA-bound species formed at even high protein to DNA mole ratios remain reversible. Surprisingly, only linear and supercoiled DNA, not nicked-circular DNA, can completely displace Smc2/4 prebound to a labeled, nicked-circular DNA. To explain this geometry-dependent competition, we present two models of DNA binding by SMCs in which two DNA duplexes are captured within the inter-coil space of an Smc2/4 heterodimer. Based on these models, we propose a DNA displacement mechanism to explain how differences in geometry could affect the competitive potential of DNA.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Gene/Complex | Qualifier | Gene Ontology Term | Annotation Extension | Evidence | Source | Assigned On |
---|---|---|---|---|---|---|
SMC2 | contributes to | ATP hydrolysis activity | IDA | SGD | 2013-09-09 | |
SMC4 | contributes to | ATP hydrolysis activity | IDA | SGD | 2013-09-09 |
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.