Reference: Krasowska A, et al. (2002) Viability and formation of conjugated dienes in plasma membrane lipids of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Rhodotorula glutinis and Candida albicans exposed to hydrophilic, amphiphilic and hydrophobic pro-oxidants. Folia Microbiol (Praha) 47(2):145-51

Reference Help

Abstract


Effects of four lipid peroxidation-inducing pro-oxidants--amphiphilic tert-butyl hydroperoxide (TBHP), hydrophobic 1,1'-azobis(4-cyclohexanecarbonitrile) (ACHN), hydrophilic FeII and 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH)--on cell growth and on generation of peroxidation products in isolated plasma membrane lipids were determined in four yeast species (S. cerevisiae, S. pombe, R. glutinis and C. albicans) differing in their plasma membrane lipid composition. TBHP and ACHN inhibited cell growth most strongly, FeII and AAPH exerted inhibitory action for about 2 h, with subsequent cell growth resumption. S. cerevisiae strain SP4 was doped during growth with unsaturated linoleic (18:2) and linolenic (18:3) acids to change its resistance to lipid peroxidation. Its plasma membranes then contained some 30% of these acids as compared with some 1.3% of 18:2 acid found in undoped S. cerevisiae, while the content of (16:1) and (18:1) acids was lower than in undoped S. cerevisiae. The presence of linoleic and linolenic acids in S. cerevisiae cells lowered cell survival and increased the sensitivity to pro-oxidants. Peroxidation-generated conjugated dienes (CD) were measured in pure TBHP- and ACHN-exposed fatty acids used as standards. The CD level depended on the extent of unsaturation and the pro-oxidant used. The TBHP-induced CD production in a mixture of oleic acid and its ester was somewhat lower than in free acid and ester alone. In lipids isolated from the yeast plasma membranes, the CD production was time-dependent and decreased after a 5-15-min pro-oxidant exposure. ACHN was less active than TBHP. The most oxidizable were lipids from S. cerevisiae plasma membranes doped with linoleic and linolenic acids and from C. albicans with indigenous linolenic acid.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Krasowska A, Chmielewska L, Gapa D, Prescha A, Váchová L, Sigler K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference