Reference: Keeling KM, et al. (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10(4):691-703

Reference Help

Abstract


The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference