Reference: Ito K (2005) Ribosome-based protein folding systems are structurally divergent but functionally universal across biological kingdoms. Mol Microbiol 57(2):313-7

Reference Help

Abstract


In bacteria, Trigger factor (TF) is the first chaperone that interacts with nascent polypeptides as soon as they emerge from the exit tunnel of the ribosome. TF binds to the ribosomal protein L23 located next to the tunnel exit of the large subunit, with which it forms a cradle-like space embracing the polypeptide exit region. It cooperates with the DnaK Hsp70 chaperone system to ensure correct folding of a number of newly translated cytosolic proteins in Escherichia coli. Whereas TF is exclusively found in prokaryotes and chloroplasts, Saccharomyces cerevisiae, a eukaryotic microorganism, has a three-member Hsp70-J protein complex, Ssb-Ssz-Zuo, which could act as a ribosome-associated folding facilitator. In the work reported in this volume of Molecular Microbiology, Rauch et al. (2005, Mol Microbiol, doi:10.1111/j.1365-2958.2005.04690.x) examined the functional similarity of the ribosome-associated chaperones in prokaryotes and eukaryotes. In spite of the fact that TF and the Hsp70-based triad are structurally unrelated, TF can bind to the yeast ribosome via Rpl25 (the L23 counterpart) and can substitute for some, but not all, of the functions assigned to Ssb-Ssz-Zuo in yeast. The functional conservation of the ribosome-associated chaperones without structural similarity is remarkable and suggests that during evolution nature has employed a common design but divergent components to facilitate folding of polypeptides as they emerge from the ribosomal exit, a fundamental process required for the efficient expression of genetic information.

Reference Type
Comment | Journal Article
Authors
Ito K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference