Reference: Burhans DT, et al. (2006) Non-random clustering of stress-related genes during evolution of the S. cerevisiae genome. BMC Evol Biol 6:58

Reference Help

Abstract


Background: Coordinately regulated genes often physically cluster in eukaryotic genomes, for reasons that remain unclear.

Results: Here we provide evidence that many S. cerevisiae genes induced by starvation and other stresses reside in non-random clusters, where transcription of these genes is repressed in the absence of stress. Most genes essential for growth or for rapid, post-transcriptional responses to stress in cycling cells map between these gene clusters. Genes that are transcriptionally induced by stresses include a large fraction of rapidly evolving paralogues of duplicated genes that arose during an ancient whole genome duplication event. Many of these rapidly evolving paralogues have acquired new or more specialized functions that are less essential for growth. The slowly evolving paralogues of these genes are less likely to be transcriptionally repressed in the absence of stress, and are frequently essential for growth or for rapid stress responses that may require constitutive expression of these genes in cycling cells.

Conclusion: Our findings suggest that a fundamental organizing principle during evolution of the S. cerevisiae genome has been clustering of starvation and other stress-induced genes in chromosome regions that are transcriptionally repressed in the absence of stress, from which most genes essential for growth or rapid stress responses have been excluded. Chromatin-mediated repression of many stress-induced genes may have evolved since the whole genome duplication in parallel with functions for proteins encoded by these genes that are incompatible with growth. These functions likely provide fitness effects that escape detection in assays of reproductive capacity routinely employed to assess evolutionary fitness, or to identify genes that confer stress-resistance in cycling cells.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Burhans DT, Ramachandran L, Wang J, Liang P, Patterton HG, Breitenbach M, Burhans WC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference