Reference: Liang L, et al. (2007) Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microb Cell Fact 6:36

Reference Help

Abstract


Background: The NAD(P)H-dependent Pichia stipitis xylose reductase (PsXR) is one of the key enzymes for xylose fermentation, and has been cloned into the commonly used ethanol-producing yeast Saccharomyces cerevisiae. In order to eliminate the redox imbalance resulting from the preference of this enzyme toward NADPH, efforts have been made to alter the coenzyme specificity of PsXR by site-directed mutagenesis, with limited success. Given the industrial importance of PsXR, it is of interest to investigate further ways to create mutants of PsXR that prefers NADH rather than NADPH, by the alternative directed evolution approach.

Results: Based on a homology model of PsXR, six residues were predicted to interact with the adenine ribose of NAD(P)H in PsXR and altered using a semi-rational mutagenesis approach (CASTing). Three rounds of saturation mutagenesis were carried to randomize these residues, and a microplate-based assay was applied in the screening. A best mutant 2-2C12, which carried four mutations K270S, N272P, S271G and R276F, was obtained. The mutant showed a preference toward NADH over NADPH by a factor of about 13-fold, or an improvement of about 42-fold, as measured by the ratio of the specificity constant kcat/Kmcoenzyme. Compared with the wild-type, the kcatNADH for the best mutant was only slightly lower, while the kcatNADPH decreased by a factor of about 10. Furthermore, the specific activity of 2-2C12 in the presence of NADH was 20.6 U.mg-1, which is highest among PsXR mutants reported.

Conclusion: A seemingly simplistic and yet very effective mutagenesis approach, CASTing, was applied successfully to alter the NAD(P)H preference for Pichia stipitis xylose reductase, an important enzyme for xylose-fermenting yeast. The observed change in the NAD(P)H preference for this enzyme seems to have resulted from the altered active site that is more unfavorable for NADPH than NADH in terms of both Km and kcat. There are potentials for application of our PsXR in constructing a more balanced XR-XDH pathway in recombinant xylose-fermenting S. cerevisiae strains.

Reference Type
Journal Article
Authors
Liang L, Zhang J, Lin Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference