Reference: Maruyama T, et al. (1994) Polyamine-sensitive magnesium transport in Saccharomyces cerevisiae. Biochim Biophys Acta 1194(2):289-95

Reference Help

Abstract


In Saccharomyces cerevisiae we found a toxic effect of polyamines, well-known metabolites important for cell proliferation; in magnesium-limited (50 microM Mg2+) synthetic medium, cell growth was severely inhibited by spermine, spermidine and putrescine in descending order. In conjunction with a decrease in the growth rate by the addition of 0.5 mM spermine, the internal Mg2+ content decreased and the spermine content increased. When cell growth ceased, the Mg2+ content had finally decreased to about 40% of the value before the addition of spermine (120-130 nmol/mg dry weight), and the spermine content concomitantly increased 30-fold (from 1 to 30 nmol/mg dry weight); spermine4+ apparently took the internal place of Mg2+ with a probable stoichiometry of 1:2. However, the total amount of Mg2+ retained in the cells remained constant even with the addition of spermine, suggesting that spermine blocks Mg2+ accumulation. In high (2 mM) Mg2+ medium, cell growth was hardly affected by polyamines, and an exchange of spermine and Mg2+ was minimal. Energy-dependent Mg2+ uptake by whole cells was inhibited by spermine, spermidine and putrescine in a similar manner as the growth rates. On the other hand, Mg2+ inhibited spermine uptake. These results suggest that competition takes place between extracellular spermine and Mg2+ for their accumulations. It is thus clear that polyamine-sensitive Mg2+ transport system is indispensable for the physiology of this organism.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Maruyama T, Masuda N, Kakinuma Y, Igarashi K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference