Reference: Mougin A, et al. (1996) Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. RNA 2(11):1079-93

Reference Help

Abstract


The Saccharomyces cerevisiae U3 snoRNA genes contain long spliceosomal introns with noncanonical branch site sequences. By using chemical and enzymatic methods to probe the RNA secondary structure and site-directed mutagenesis, we established the complete secondary structure of the U3A snoRNA precursor. This is the first determination of the complete secondary structure of an RNA spliced in a spliceosome. The peculiar cruciform structure of the U3A snoRNA 3'-terminal region is formed in the precursor RNA and the conserved Boxes B and C are accessible for binding the U3 snoRNP proteins. The intron forms a highly folded structure with a long central stem-loop structure that brings the 5' box and the branch site together. This is in agreement with the idea that secondary structure interactions are necessary for efficient splicing of long introns in yeast. The 3' splice site is in a bulged loop and the branch site sequence is single-stranded. Surprisingly, the 5' splice site is involved in a 6-base pair interaction. We used in vitro splicing experiments to show that, despite a noncanonical branch site sequence and a base paired 5' splice site, transcripts that mimic the authentic pre-U3A snoRNA are spliced very efficiently in vitro. Sequestering the 5' splice site in a more stable structure had a negative effect on splicing, which was partially compensated by converting the branch site sequence into a canonical sequence. Analysis of spliceosomal complex formation revealed a cumulative negative effect of a base pair interaction at the 5' splice site and of a deviation to the consensus sequence at the branch site on the efficiency of spliceosome formation in vitro.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Mougin A, Grégoire A, Banroques J, Ségault V, Fournier R, Brulé F, Chevrier-Miller M, Branlant C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference