Reference: Almeida JR, et al. (2009) Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 84(4):751-61

Reference Help

Abstract


Industrial Saccharomyces cerevisiae strains able to utilize xylose have been constructed by overexpression of XYL1 and XYL2 genes encoding the NADPH-preferring xylose reductase (XR) and the NAD(+)-dependent xylitol dehydrogenase (XDH), respectively, from Pichia stipitis. However, the use of different co-factors by XR and XDH leads to NAD(+) deficiency followed by xylitol excretion and reduced product yield. The furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural inhibit yeast metabolism, prolong the lag phase, and reduce the ethanol productivity. Recently, genes encoding furaldehyde reductases were identified and their overexpression was shown to improve S. cerevisiae growth and fermentation rate in HMF containing media and in lignocellulosic hydrolysate. In the current study, we constructed a xylose-consuming S. cerevisiae strain using the XR/XDH pathway from P. stipitis. Then, the genes encoding the NADH- and the NADPH-dependent HMF reductases, ADH1-S110P-Y295C and ADH6, respectively, were individually overexpressed in this background. The performance of these strains, which differed in their co-factor usage for HMF reduction, was evaluated under anaerobic conditions in batch fermentation in absence or in presence of HMF. In anaerobic continuous culture, carbon fluxes were obtained for simultaneous xylose consumption and HMF reduction. Our results show that the co-factor used for HMF reduction primarily influenced formation of products other than ethanol, and that NADH-dependent HMF reduction influenced product formation more than NADPH-dependent HMF reduction. In particular, NADH-dependent HMF reduction contributed to carbon conservation so that biomass was produced at the expense of xylitol and glycerol formation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference