Reference: Czaja W, et al. (2010) Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity. DNA Repair (Amst) 9(9):976-84

Reference Help

Abstract


Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Delta cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Delta cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Delta cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Czaja W, Bespalov VA, Hinz JM, Smerdon MJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference