Reference: Nakasako M, et al. (2010) Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus. Biochemistry 49(32):6953-62

Reference Help

Abstract


Protein disulfide isomerase (PDI) acts as folding catalyst and molecular chaperone for disulfide-containing proteins through the formation, breakage, and rearrangement of disulfide bonds. PDI has a modular structure comprising four thioredoxin domains, a, b, b', and a', followed by a short segment, c. The a and a' domains have an active site cysteine pair for the thiol-disulfide exchange reaction, which alters PDI between the reduced and oxidized forms, and the b' domain provides a primary binding site for substrate proteins. Although the structures and functions of PDI have studied, it is still argued whether the overall conformation of PDI depends on the redox state of the active site cysteine pair. Here, we report redox-dependent conformational and solvation changes of PDI from a thermophilic fungus elucidated by small-angle X-ray scattering (SAXS) analysis. The redox state and secondary structures of PDI were also characterized by nuclear magnetic resonance and circular dichroic spectroscopy, respectively. The oxidized form of PDI showed SAXS differences from the reduced form, and the low-resolution molecular models restored from the SAXS profiles differed between the two forms regarding the positions of the a'-c region relative to the a-b-b' region. The normal mode analysis of the crystal structure of yeast PDI revealed that the inherent motions of the a-b-b' and a'-c regions expose the substrate binding surface of the b' domain. The apparent molecular weight of the oxidized form estimated from SAXS was 1.1 times larger than that of the reduced form, whereas the radius of gyration (ca. 33 A) was nearly independent of the redox state. These results suggest that the conformation of PDI is controlled by the redox state of the active site cysteine residues in the a and a' domains and that the conformational alternation accompanies solvation changes in the active site cleft formed by the a, b, b', and a' domains. On the basis of the results presented here, we propose a mechanism explaining the observed redox-dependent conformational and solvation changes of PDI.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nakasako M, Maeno A, Kurimoto E, Harada T, Yamaguchi Y, Oka T, Takayama Y, Iwata A, Kato K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference