Reference: Okada Y, et al. (2005) Knowledge-assisted recognition of cluster boundaries in gene expression data. Artif Intell Med 35(1-2):171-83

Reference Help

Abstract


Background and motivation: DNA microarray technology has made it possible to determine the expression levels of thousands of genes in parallel under multiple experimental conditions. Genome-wide analyses using DNA microarrays make a great contribution to the exploration of the dynamic state of genetic networks, and further lead to the development of new disease diagnosis technologies. An important step in the analysis of gene expression data is to classify genes with similar expression patterns into the same groups. To this end, hierarchical clustering algorithms have been widely used. Major advantages of hierarchical clustering algorithms are that investigators do not need to specify the number of clusters in advance and results are presented visually in the form of a dendrogram. However, since traditional hierarchical clustering methods simply provide results on the statistical characteristics of expression data, biological interpretations of the resulting clusters are not easy, and it requires laborious tasks to unveil hidden biological processes regulated by members in the clusters. Therefore, it has been a very difficult routine for experts.

Objective: Here, we propose a novel algorithm in which cluster boundaries are determined by referring to functional annotations stored in genome databases.

Materials and methods: The algorithm first performs hierarchical clustering of gene expression profiles. Then, the cluster boundaries are determined by the Variance Inflation Factor among the Gene Function Vectors, which represents distributions of gene functions in each cluster. Our algorithm automatically specifies a cutoff that leads to functionally independent agglomerations of genes on the dendrogram derived from similarities among gene expression patterns. Finally, each cluster is annotated according to dominant gene functions within the respective cluster.

Results and conclusions: In this paper, we apply our algorithm to two gene expression datasets related to cell cycle and cold stress response in budding yeast Saccharomyces cerevisiae. As a result, we show that the algorithm enables us to recognize cluster boundaries characterizing fundamental biological processes such as the Early G1, Late G1, S, G2 and M phases in cell cycles, and also provides novel annotation information that has not been obtained by traditional hierarchical clustering methods. In addition, using formal cluster validity indices, high validity of our algorithm is verified by the comparison through other popular clustering algorithms, K-means, self-organizing map and AutoClass.

Reference Type
Journal Article
Authors
Okada Y, Sahara T, Mitsubayashi H, Ohgiya S, Nagashima T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference