Reference: Lu LJ, et al. (2005) Assessing the limits of genomic data integration for predicting protein networks. Genome Res 15(7):945-53

Reference Help

Abstract


Genomic data integration--the process of statistically combining diverse sources of information from functional genomics experiments to make large-scale predictions--is becoming increasingly prevalent. One might expect that this process should become progressively more powerful with the integration of more evidence. Here, we explore the limits of genomic data integration, assessing the degree to which predictive power increases with the addition of more features. We focus on a predictive context that has been extensively investigated and benchmarked in the past-the prediction of protein-protein interactions in yeast. We start by using a simple Naive Bayes classifier for integrating diverse sources of genomic evidence, ranging from coexpression relationships to similar phylogenetic profiles. We expand the number of features considered for prediction to 16, significantly more than previous studies. Overall, we observe a small, but measurable improvement in prediction performance over previous benchmarks, based on four strong features. This allows us to identify new yeast interactions with high confidence. It also allows us to quantitatively assess the inter-relations amongst different genomic features. It is known that subtle correlations and dependencies between features can confound the strength of interaction predictions. We investigate this issue in detail through calculating mutual information. To our surprise, we find no appreciable statistical dependence between the many possible pairs of features. We further explore feature dependencies by comparing the performance of our simple Naive Bayes classifier with a boosted version of the same classifier, which is fairly resistant to feature dependence. We find that boosting does not improve performance, indicating that, at least for prediction purposes, our genomic features are essentially independent. In summary, by integrating a few (i.e., four) good features, we approach the maximal predictive power of current genomic data integration; moreover, this limitation does not reflect (potentially removable) inter-relationships between the features.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference