Reference: Murafuji T, et al. (2004) Antifungal activity of organobismuth compounds against the yeast Saccharomyces cerevisiae: structure-activity relationship. J Inorg Biochem 98(3):547-52

Reference Help

Abstract


Antifungal activity of organobismuth(III) and (V) compounds 1-9 was examined against the yeast, Saccharomyces cerevisiae. A clear structure-activity relationship was observed in these compounds. Thus, triarylbismuth dichlorides 2 [(4-YC6H4)3BiCl2: Y=MeO, F, Cl, CF3, CN, NO2] and halobismuthanes 6 [2-(t)BuSO2C6H4(4-YC6H4)BiX: Y=MeO, Me, H, Cl; X=Cl, Br, I], 7 [Bi(X)(C6H4-2-SO2C6H4-1'-): X=Cl, Br, I], 8 [2-Me2NCH2C6H4(Ph)BiX: X=Cl, Br] and 9 [4-MeC6H4(8-Me2NC10H6-1-)BiCl] showed the growth inhibition effect, while triarylbismuth difluorides 3 [(4-YC6H4)3BiF2] and triarylbismuthanes 1 [(4-YC6H4)3Bi], 4 [2-(t)BuSO2C6H4(4-YC6H4)2Bi] and 5 [4-YC6H4Bi(C6H4-2-SO2C6H4-1'-)] were not active at all irrespective of the nature of the substituents. Generation of the inhibition effect is governed by the facility of nucleophilic reaction at the bismuth center and the Lewis acidic bismuth center is an active site. Of all the bismuth compounds attempted, halobismuthanes 7 derived from diphenyl sulfone exhibited the highest activities. An X-ray crystallographic study of 7a [Bi(Cl)(C6H4-2-SO2C6H4-1'-)] revealed that the bismuth center adopts a seven-coordinated geometry, which is unusual in organobismuth(III) compounds, through the intramolecular and intermolecular coordination between the bismuth and oxygen atoms. The marked inhibition effect of 7 may be attributed to such a highly coordinated geometry, which allows the bismuth center to bind tightly with some biomolecules playing important roles in the growth of S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Murafuji T, Miyoshi Y, Ishibashi M, Mustafizur Rahman AF, Sugihara Y, Miyakawa I, Uno H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference