Reference: Zhao Y and DeLancey GB (1999) A predictive thermodynamic model for the bioreduction of acetophenone to phenethyl alcohol using resting cells of Saccharomyces cerevisiae. Biotechnol Bioeng 64(4):442-51

Reference Help

Abstract


Equilibrium conversions were observed in the range of 60.2-76.0% with different initial compositions of reaction media for the bioreduction of acetophenone using resting cells of Saccharomyces cerevisiae in aqueous solutions at 30 degrees C. The reduction of acetophenone in the cells under anaerobic conditions is considered to be coupled with the oxidation of ethanol to acetate in the cytoplasm. A biphasic thermodynamic model is proposed which includes a nonuniform distribution of reagents across the cell membrane, a transmembrane pH gradient, ideal and nonideal solution models, and a basic reaction stoichiometry (ACP + (1/2) EtOH + (1/2)H2O <--> PEA + (1/2)Ac- + (1/2)H+). The intracellular activity coefficients were based on the Lewis-Randall rule for acetophenone, phenethyl alcohol, and H2O and Henry's law for ethanol, acetate anion, and H+. The overall standard Gibbs free energy was estimated to be -0.11 kcal/mol at a pH 7, 25 degrees C, and 1 atm. The intracellular thermodynamic activity coefficients of acetophenone and phenethyl alcohol were predicted to be 471.2 and 866.4, respectively, using the measured initial distribution coefficients and calculated extracellular activity coefficients. The model reflected a zero Gibbs free energy change at calculated conversions within 4% of the measured equilibrium conversions. The analysis verified the effect of the concentration ratio of the substrate acetophenone to the co-substrate ethanol on the conversion efficiency and suggested that the intracellular pH and the pH gradient across the cell transmembrane significantly affect the predicted equilibrium conversion. The intracellular pH of resting, viable cells of Bakers' yeast at the bioconversion conditions was determined experimentally to be 5.77.

Reference Type
Journal Article
Authors
Zhao Y, DeLancey GB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference