Reference: Burhans WC and Weinberger M (2012) DNA damage and DNA replication stress in yeast models of aging. Subcell Biochem 57:187-206

Reference Help

Abstract


DNA damage DNA damage is an important factor in aging in all eukaryotes. Although connections between DNA damage DNA damage and aging have been extensively investigated in complex organisms, only a relatively few studies have investigated DNA damage DNA damage as an aging factor in the model organism S. cerevisiae. Several of these studies point to DNA replication stress DNA replication stress as a cause of age-dependent DNA damage DNA damage in the replicative model of aging, which measures how many times budding yeast cells divide before they senesce and die. Even fewer studies have investigated how DNA damage DNA damage contributes to aging in the chronological aging chronological aging model, which measures how long cells in stationary phase cultures retain reproductive capacity. DNA replication stress DNA replication stress also has been implicated as a factor in chronological aging chronological aging . Since cells in stationary phase are generally considered to be "post-mitotic" and to reside in a quiescent G0/G1 state, the notion that defects in DNA replication might contribute to chronological aging chronological aging appears to be somewhat paradoxical. However, the results of recent studies suggest that a significant fraction of cells in stationary phase cultures are not quiescent, especially in experiments that employ defined medium, which is frequently employed to assess chronological lifespan. Most cells that fail to achieve quiescence remain in a viable, but non-dividing state until they eventually die, similar to the senescent state in mammalian cells. In this chapter we discuss the role of DNA damage DNA damage and DNA replication stress DNA replication stress in both replicative and chronological aging chronological aging in S. cerevisiae. We also discuss the relevance of these findings to the emerging view that DNA damage DNA damage and DNA replication stress DNA replication stress are important components of the senescent state that occurs at early stages of cancer.

Reference Type
Journal Article | Review
Authors
Burhans WC, Weinberger M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference