Reference: Pu S, et al. (2015) Extracting high confidence protein interactions from affinity purification data: at the crossroads. J Proteomics 118:63-80

Reference Help

Abstract


Unlabelled: Deriving protein-protein interactions from data generated by affinity-purification and mass spectrometry (AP-MS) techniques requires application of scoring methods to measure the reliability of detected putative interactions. Choosing the appropriate scoring method has become a major challenge. Here we apply six popular scoring methods to the same AP-MS dataset and compare their performance. The comparison was carried out for six distinct datasets from human, fly and yeast, which focus on different biological processes and differ in their coverage of the proteome. Results show that the performance of a given scoring method may vary substantially depending on the dataset. Disturbingly, we find that the high confidence (HC) PPI networks built by applying the six scoring methods to the same raw AP-MS dataset display very poor overlap, with only 1.7-4.1% of the HC interactions present in all the networks built, respectively, from the proteome-wide human, fly or yeast datasets. Various properties of the shared versus unique interactions in each network, including biases in protein abundance, suggest that current scoring methods are able to eliminate only the most obvious contaminants, but still fail to reliably single out specific interactions from the large body of spurious associations detected in the AP-MS experiments.

Biological significance: The fast progress in AP-MS techniques has prompted the development of a multitude of scoring methods, which are relied upon to remove contaminants and non-specific binders. Choosing the appropriate scoring scheme for a given AP-MS dataset has become a major challenge. The comparative analysis of 6 of the most popular scoring methods, presented here, reveals that overall these methods do not perform as expected. Evidence is provided that this is due to 3 closely related issues: the high 'noise' levels of the raw AP-MS data, the limited capacity of current scoring methods to deal with such high noise levels, and the biases introduced using Gold Standard datasets to benchmark the scoring functions and threshold the networks. For the field to move forward, all three issues will have to be addressed. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pu S, Vlasblom J, Turinsky A, Marcon E, Phanse S, Trimble SS, Olsen J, Greenblatt J, Emili A, Wodak SJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference