Reference: Li P, et al. (2017) The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol Biofuels 10:289

Reference Help

Abstract


Background: High temperature inhibits cell growth and ethanol fermentation of Saccharomyces cerevisiae. As a complex phenotype, thermotolerance usually involves synergistic actions of many genes, thereby being difficult to engineer. The overexpression of either endogenous or exogenous stress-related transcription factor genes in yeasts was found to be able to improve relevant stress tolerance of the hosts.

Results: To increase ethanol yield of high-temperature fermentation, we constructed a series of strains of S. cerevisiae by expressing 8 transcription factor genes from S. cerevisiae and 7 transcription factor genes from thermotolerant K. marxianus in S. cerevisiae. The results of growth curve measurements and spotting test show that KmHsf1 and KmMsn2 can enhance cell growth of S. cerevisiae at 40-42 °C. According to the results of batch fermentation at 43 °C with an initial glucose concentration of 104.8 g/l, the fermentation broths of KmHSF1 and KmMSN2-expressing strains could reach final ethanol concentrations of 27.2 ± 1.4 and 27.6 ± 1.2 g/l, respectively, while the control strain just produced 18.9 ± 0.3 g/l ethanol. Transcriptomic analysis found that the expression of KmHSF1 and KmMSN2 resulted in 55 (including 31 up-regulated and 24 down-regulated) and 50 (including 32 up-regulated and 18 down-regulated) genes with different expression levels, respectively (padj < 0.05). The results of transcriptomic analysis also reveal that KmHsf1 might increase ethanol production by regulating genes related to transporter activity to limit excessive ATP consumption and promote the uptake of glucose; while KmMsn2 might promote ethanol fermentation by regulating genes associated with glucose metabolic process and glycolysis/gluconeogenesis. In addition, KmMsn2 might also help to cope with high temperature by regulating genes associated with lipid metabolism to change the membrane fluidity.

Conclusions: The transcription factors KmHsf1 and KmMsn2 of thermotolerant K. marxianus can promote both cell growth and ethanol fermentation of S. cerevisiae at high temperatures. Different mechanisms of KmHsf1 and KmMsn2 in promoting high-temperature ethanol fermentation of S. cerevisiae were revealed by transcriptomic analysis.

Reference Type
Journal Article
Authors
Li P, Fu X, Zhang L, Zhang Z, Li J, Li S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference