Reference: Liu ZL, et al. (2019) Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 103(14):5781-5796

Reference Help

Abstract


Inhibitory compounds liberated from lignocellulose pretreatment are representative toxic chemicals that repress microbial growth and metabolism. A tolerant strain of the industrial yeast Saccharomyces cerevisiae is able to detoxify a major class of toxic compounds while producing ethanol. Knowledge on the yeast tolerance was mostly obtained by gene expression analysis and limited protein expression evidence is yet available underlying the yeast adaptation. Here we report a comparative protein expression profiling study on Y-50049, a tolerant strain compared with its parental industrial type strain Y-12632. We found a distinctive protein expression of glucose-6-phosphate dehydrogenase (Zwf1) in Y-50049 but not in Y-12632, in the relatively conserved glycolysis and pentose phosphate pathway (PPP) in response to a combinational challenge of 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF). A group of proteins with aldehyde reduction activity was uniquely induced expressed in Y-50049 but not in Y-12632. Such evidence allowed fine-tuning a mechanism of the renovated in situ detoxification by Y-50049. As the key protein, Zwf1 drove the glucose metabolism in favor of the oxidative branch of the PPP facilitating in situ detoxification of the toxic chemicals by Y-50049. The activated expression of Zwf1 generated the essential cofactor nicotinamide adenine dinucleotide phosphate (NADPH) enabling reduction of furfural and HMF through a group of aldehyde reduction enzymes. In return, the activate aldehyde reductions released desirable feedbacks of NADP+ stimulating continued oxidative activity of Zwf1. Thus, a well-maintained cofactor regeneration cycle was established to restore the cofactor imbalance caused by furfural-HMF. Challenges and perspectives on adaptation of significantly differential expressions of ribosomal proteins and other unique proteins are also discussed.

Reference Type
Comparative Study | Journal Article
Authors
Liu ZL, Huang X, Zhou Q, Xu J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference