Reference: Fukuda T, et al. (2019) Large-scale analysis of diffusional dynamics of proteins in living yeast cells using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 520(2):237-242

Reference Help

Abstract


In the living cells, the majority of proteins does not work alone, but interact with other proteins or other biomolecules to maintain the cellular function, constituting a "protein community". Previous efforts on mass spectroscopy-based protein interaction networks, interactomes, have provided a picture on the protein community. However, these were static information after cells were disrupted. For a better understanding of the protein community in cells, it is important to know the properties of intracellular dynamics and interactions. Since hydrodynamic size and mobility of proteins are related into such properties, direct measurement of diffusional motion of proteins in single living cells will be helpful for uncovering the properties. Here we completed measurement of the diffusion and homo-oligomeric properties of 369 cytoplasmic GFP-fusion proteins in living yeast Saccharomyces cerevisiae cells using fluorescence correlation spectroscopy (FCS). The large-scale analysis showed that the motions of majority of proteins obeyed a two-component (i.e. slow and fast components) diffusion model. Remarkably, both of the two components diffused more slowly than expected monomeric states. In addition, further analysis suggested that more proteins existed as homo-oligomeric states in living cells than previously expected. Our study, which characterizes the dynamics of proteins in living cells on a large-scale, provided a global view on intracellular protein dynamics to understand the protein community.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fukuda T, Kawai-Noma S, Pack CG, Taguchi H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference