Reference: Smith DL, et al. (2020) Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomycescerevisiae Fibrillarin and Its Association with Nucleolar Localization. J Mol Biol 432(2):448-466

Reference Help

Abstract


Crosstalk exists when two or more post-translational modifications, nearby in sequence or 3D space, affect each other or a protein's interactions. Saccharomyces cerevisiae protein Npl3p has six repeats of sequence SRGG, in a disordered domain, which can carry arginine methylation and serine phosphorylation. Crosstalk of the modifications controls Npl3p interactions with nuclear import, export, and other proteins. Here, we asked whether repeated SRGG motifs existed in other S. cerevisiae proteins and whether they serve a related function. Two other proteins had multiple SRGG motifs: Nop1p (fibrillarin) and Gar1p, both nucleolar proteins, which had nine and four motifs, respectively. For Nop1p, we first showed it to be extensively methylated in vivo. We then showed that the Nop1p SRGG motif is subjected to methylation by Hmt1p, phosphorylation by Sky1p, and Glc7p dephosphorylation and that there is crosstalk whereby phosphorylation blocks methylation. This is consistent with our recent motif analysis of Hmt1p, which revealed a negative specificity for acidic residues at -1 and -2 positions. On knockout of HMT1, Nop1p-GFP localization was not typically nucleolar. Conditional two-hybrid analysis, of Nop1p with C/D box small ribonuclear proteins Nop56p and Nop58p, suggested this may be associated with decreased protein-protein interactions on loss of arginine methylation. The effect of SRGG phosphorylation on the interactions of Nop1p remains unknown yet was predicted to cause a structural disorder-to-order transition in the Nop1p N-terminal domain. The SRGG motif is one of very few examples of modification crosstalk that has related functions in multiple proteins from the same species.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Smith DL, Erce MA, Lai YW, Tomasetig F, Hart-Smith G, Hamey JJ, Wilkins MR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference