Reference: Marr LT, et al. (2020) A method for assessing histone surface accessibility genome-wide. Methods 184:61-69

Reference Help

Abstract


The assembly of DNA into nucleosomes and higher order chromatin structures serves not only as a means of compaction but also organizes the genome to facilitate crucial processes such as cell division and regulation of gene expression. Chromatin structure generally limits access to DNA, with the accessibility of DNA in chromatin being regulated through post translational modification of the histone proteins as well as the activity of chromatin remodeling proteins and architectural chromatin factors. There is great interest in assessing chromatin accessibility genome-wide to identify functional elements associated with enhancers, promoters, and other discontinuities in the compacted chromatin structure associated with gene expression. As the vast majority of techniques rely upon assessment of the exposure of the underlying DNA, we describe here a general method that can be used to assess exposure of internal and external histone protein surfaces. We demonstrate the feasibility of this method, in the organism S. cerevisiae. Our method relies on substitution of residues residing on selected histone protein surfaces with cysteine, and assessment of exposure by reaction with a thiol specific reagent, biotin-maleimide. We demonstrate that modified nucleosomes can be efficiently excised from nuclei treated with the reagent via a one-step purification process. After library preparation and deep sequencing, selected nucleosomes are typically ~25-fold enriched over background signals and exhibit phasing with respect to transcription start sites in yeast that is identical to an unselected population.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, N.I.H., Intramural
Authors
Marr LT, Clark DJ, Hayes JJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference