Reference: Navarrete-Perea J, et al. (2021) Growth media selection alters the proteome profiles of three model microorganisms. J Proteomics 231:104006

Reference Help

Abstract


The selection of growth media is a very important consideration of any cell-based proteomics experiment. Alterations thereof may result in differences in basal proteomes simply due to disparities in the metabolite composition of the media. We investigate the effect of growth media on the proteomes of three microorganisms, specifically E. coli, S. cerevisiae, and S. pombe, using tandem mass tag (TMT)-based quantitative proteomics. We compared the protein abundance profiles of these microorganisms propagated in two distinct growth media that are commonly used for the respective organism. Our sample preparation strategy included SP3 bead-assisted protein isolation and digestion. In addition, we assembled a replicate set of samples in which we altered the proteolytic digestion from sequential treatment with LysC and trypsin to only LysC. Despite differences in peptides identified and a drop in quantified proteins, the results were similar between the two datasets for all three microorganisms. Approximately 10% of the proteins of each respective microorganism were significantly altered in each dataset. As expected, gene ontology analysis revealed that the majority of differentially expressed proteins are implicated in metabolism. These data emphasize further the importance and the potential consequences of growth media selection. SIGNIFICANCE: Various microorganisms are used as model systems throughout in biological studies, including proteomics-based investigations. The growth conditions of these organisms are of utmost importance, of which one major consideration is the choice of growth media. We hypothesize that growth media selection has a considerable impact on the baseline proteome of a given microorganism. To test this hypothesis, we used tandem mass tag (TMT)-based quantitative multiplexed proteomics to profile the proteomes of E. coli, S. cerevisiae, and S. pombe each grown in two different, yet common, growth media for the respective species. Our data show that approximately 10% of the proteins of each respective microorganism were significantly altered and that many of the differentially expressed proteins are implicated in metabolism. We provide several datasets which are potentially valuable for growth media selection with respect to downstream biochemical analysis.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Navarrete-Perea J, Gygi SP, Paulo JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference