Reference: Khattab SMR and Watanabe T (2021) Efficient Conversion of Glycerol to Ethanol by an Engineered Saccharomyces cerevisiae Strain. Appl Environ Microbiol 87(23):e0026821

Reference Help

Abstract


Glycerol is an eco-friendly solvent that enhances plant biomass decomposition via glycerolysis in many pretreatment methods. Nonetheless, inefficient conversion of glycerol to ethanol by natural Saccharomyces cerevisiae limits its use in these processes. In this study, we have developed an efficient glycerol-converting yeast strain by genetically modifying the oxidation of cytosolic NAD (NADH) by an O2-dependent dynamic shuttle and abolishing both glycerol phosphorylation and biosynthesis in S. cerevisiae strain D452-2, as well as by vigorous expression of whole genes in the dihydroxyacetone (DHA) pathway (Candida utilis glycerol facilitator, Ogataea polymorpha glycerol dehydrogenase, endogenous dihydroxyacetone kinase, and triosephosphate isomerase). The engineered strain showed conversion efficiencies (CE) up to 0.49 g ethanol/g glycerol (98% of theoretical CE), with a production rate of >1 g liter-1 h-1 when glycerol was supplemented in a single fed-batch fermentation in a rich medium. Furthermore, the engineered strain converted a mixture of glycerol and glucose into bioethanol (>86 g/liter) with 92.8% CE. To the best of our knowledge, this is the highest reported titer of bioethanol produced from glycerol and glucose. Notably, we developed a glycerol-utilizing transformant from a parent strain which cannot utilize glycerol as a sole carbon source. The developed strain converted glycerol to ethanol with a productivity of 0.44 g liter-1 h-1 on minimal medium under semiaerobic conditions. Our findings will promote the utilization of glycerol in eco-friendly biorefineries and integrate bioethanol and plant oil industries. IMPORTANCE With the development of efficient lignocellulosic biorefineries, glycerol has attracted attention as an eco-friendly biomass-derived solvent that can enhance the dissociation of lignin and cell wall polysaccharides during the pretreatment process. Coconversion of glycerol with the sugars released from biomass after glycerolysis increases the resources for ethanol production and lowers the burden of component separation. However, low conversion efficiency from glycerol and sugars limits the industrial application of this process. Therefore, the generation of an efficient glycerol-fermenting yeast will promote the applicability of integrated biorefineries. Hence, metabolic flux control in yeast grown on glycerol will lead to the generation of cell factories that produce chemicals, which will boost biodiesel and bioethanol industries. Additionally, the use of glycerol-fermenting yeast will reduce global warming and generation of agricultural waste, leading to the establishment of a sustainable society.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Khattab SMR, Watanabe T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference