Reference: Gong C, et al. (2021) FgSfl1 and Its Conserved PKA Phosphorylation Sites Are Important for Conidiation, Sexual Reproduction, and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 7(9)

Reference Help

Abstract


The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.

Reference Type
Journal Article
Authors
Gong C, Huang J, Sun D, Xu D, Guo Y, Kang J, Niu G, Wang C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference