Reference: Ajazi A, et al. (2022) CTP sensing and Mec1ATR-Rad53CHK1/CHK2 mediate a two-layered response to inhibition of glutamine metabolism. PLoS Genet 18(3):e1010101

Reference Help

Abstract


Glutamine analogs are potent suppressors of general glutamine metabolism with anti-cancer activity. 6-diazo-5-oxo-L-norleucine (DON) is an orally available glutamine analog which has been recently improved by structural modification for cancer treatment. Here, we explored the chemogenomic landscape of DON sensitivity using budding yeast as model organism. We identify evolutionarily conserved proteins that mediate cell resistance to glutamine analogs, namely Ura8CTPS1/2, Hpt1HPRT1, Mec1ATR, Rad53CHK1/CHK2 and Rtg1. We describe a function of Ura8 as inducible CTP synthase responding to inhibition of glutamine metabolism and propose a model for its regulation by CTP levels and Nrd1-dependent transcription termination at a cryptic unstable transcript. Disruption of the inducible CTP synthase under DON exposure hyper-activates the Mec1-Rad53 DNA damage response (DDR) pathway, which prevents chromosome breakage. Simultaneous inhibition of CTP synthase and Mec1 kinase synergistically sensitizes cells to DON, whereas CTP synthase over-expression hampers DDR mutant sensitivity. Using genome-wide suppressor screening, we identify factors promoting DON-induced CTP depletion (TORC1, glutamine transporter) and DNA breakage in DDR mutants. Together, our results identify CTP regulation and the Mec1-Rad53 DDR axis as key glutamine analog response pathways, and provide a rationale for the combined targeting of glutamine and CTP metabolism in DDR-deficient cancers.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ajazi A, Choudhary R, Tronci L, Bachi A, Bruhn C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference