Reference: de Mello FDSB, et al. (2022) Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw. J Genet Eng Biotechnol 20(1):80

Reference Help

Abstract


Background: Sugarcane hemicellulosic material is a compelling source of usually neglected xylose that could figure as feedstock to produce chemical building blocks of high economic value, such as xylitol. In this context, Saccharomyces cerevisiae strains typically used in the Brazilian bioethanol industry are a robust chassis for genetic engineering, given their robustness towards harsh operational conditions and outstanding fermentation performance. Nevertheless, there are no reports on the use of these strains for xylitol production using sugarcane hydrolysate.

Results: Potential single-guided RNA off-targets were analyzed in two preeminent industrial strains (PE-2 and SA-1), providing a database of 5'-NGG 20 nucleotide sequences and guidelines for the fast and cost-effective CRISPR editing of such strains. After genomic integration of a NADPH-preferring xylose reductase (XR), FMYX (SA-1 hoΔ::xyl1) and CENPKX (CEN.PK-122 hoΔ::xyl1) were tested in varying cultivation conditions for xylitol productivity to infer influence of the genetic background. Near-theoretical yields were achieved for all strains; however, the industrial consistently outperformed the laboratory strain. Batch fermentation of raw sugarcane straw hydrolysate with remaining solid particles represented a challenge for xylose metabolization, and 3.65 ± 0.16 g/L xylitol titer was achieved by FMYX. Finally, quantification of NADPH - cofactor implied in XR activity - revealed that FMYX has 33% more available cofactors than CENPKX.

Conclusions: Although widely used in several S. cerevisiae strains, this is the first report of CRISPR-Cas9 editing major yeast of the Brazilian bioethanol industry. Fermentative assays of xylose consumption revealed that NADPH availability is closely related to mutant strains' performance. We also pioneer the use of sugarcane straw as a substrate for xylitol production. Finally, we demonstrate how industrial background SA-1 is a compelling chassis for the second-generation industry, given its inhibitor tolerance and better redox environment that may favor production of reduced sugars.

Reference Type
Journal Article
Authors
de Mello FDSB, Maneira C, Suarez FUL, Nagamatsu S, Vargas B, Vieira C, Secches T, Coradini ALV, Silvello MAC, Goldbeck R, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference