Reference: Zhao Y, et al. (2023) Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Appl Environ Microbiol 89(6):e0053523

Reference Help

Abstract


Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (myo-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EA3K)3 produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EA3K)3 was integrated into delta sequence sites of the Saccharomyces cerevisiae opi1 mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of myo-inositol to increase the supply of glucaric acid precursors. The downregulation of ZWF1 and the overexpression of INM1 and ITR1 increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. IMPORTANCE Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular myo-inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular myo-inositol flux was optimized by a series of metabolic strategies to increase the myo-inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhao Y, Zuo F, Shu Q, Yang X, Deng Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference