Reference: Kiyokawa K, et al. (2023) Construction of versatile yeast plasmid vectors transferable by Agrobacterium-mediated transformation and their application to bread-making yeast strains. J Biosci Bioeng 136(2):142-151

Reference Help

Abstract


Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.

Reference Type
Journal Article
Authors
Kiyokawa K, Yamamoto S, Moriguchi K, Sugiyama M, Hisatomi T, Suzuki K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference