Reference: Xiao Q, et al. (2024) A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Biosens Bioelectron 244:115807

Reference Help

Abstract


With the rapid development of microfluidic platforms in high-throughput single-cell culturing, laborious operation to manipulate massive budding yeast cells (Saccharomyces cerevisiae) in replicative aging studies has been greatly simplified and automated. As a result, large datasets of microscopy images bring challenges to fast and accurately determine yeast replicative lifespan (RLS), which is the most important parameter to study cell aging. Based on our microfluidic diploid yeast long-term culturing (DYLC) chip that features 1100 traps to immobilize single cells and record their proliferation and aging via time-lapse imaging, herein, a dedicated algorithm combined with computer vision and residual neural network (ResNet) was presented to efficiently process tremendous micrographs in a high-throughput and automated manner. The image-processing algorithm includes following pivotal steps: (i) segmenting multi-trap micrographs into time-lapse single-trap sub-images, (ii) labeling 8 yeast budding features and training the 18-layer ResNet, (iii) converting the ResNet predictions in analog values into digital signals, (iv) recognizing cell dynamic events, and (v) determining yeast RLS and budding time interval (BTI) ultimately. The ResNet algorithm achieved high F1 scores (over 92%) demonstrating the effectiveness and accuracy in the recognition of yeast budding events, such as bud appearance, daughter dissection and cell death. Therefore, the results conduct that similar deep learning algorithms could be tailored to analyze high-throughput microscopy images and extract multiple cell behaviors in microfluidic single-cell analysis.

Reference Type
Journal Article
Authors
Xiao Q, Wang Y, Fan J, Yi Z, Hong H, Xie X, Huang QA, Fu J, Ouyang J, Zhao X, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference