Reference: De Zoysa T, et al. (2024) A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay. PLoS Genet 20(1):e1011146

Reference Help

Abstract


tRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S. pombe mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels. Prior work showed that S. pombe trm8Δ mutants, lacking 7-methylguanosine, were temperature sensitive due to RTD, and that one class of suppressors had mutations in the general amino acid control (GAAC) pathway, which was activated concomitant with RTD, resulting in further tRNA loss. We now find that another class of S. pombe trm8Δ suppressors have mutations in rpl genes, encoding 60S subunit proteins, and that suppression occurs with minimal restoration of tRNA levels and reduced GAAC activation. Furthermore, trm8Δ suppression extends to other mutations in the large or small ribosomal subunit. We also find that S. pombe tan1Δ mutants, lacking 4-acetylcytidine, are temperature sensitive due to RTD, that one class of suppressors have rpl mutations, associated with minimal restoration of tRNA levels, and that suppression extends to other rpl and rps mutations. However, although S. pombe tan1Δ temperature sensitivity is associated with some GAAC activation, suppression by an rpl mutation only modestly inhibits GAAC activation. We propose a model in which ribosomal protein mutations result in reduced ribosome concentrations, leading to both reduced ribosome collisions and a reduced requirement for tRNA, with these effects having different relative importance in trm8Δ and tan1Δ mutants. This model is consistent with our results in S. cerevisiae trm8Δ trm4Δ mutants, known to undergo RTD, fueling speculation that this model applies across eukaryotes.

Reference Type
Journal Article
Authors
De Zoysa T, Hauke AC, Iyer NR, Marcus E, Ostrowski SM, Stegemann F, Ermolenko DN, Fay JC, Phizicky EM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference